Metamath Proof Explorer


Theorem hash3

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion hash3 ( ♯ ‘ 3o ) = 3

Proof

Step Hyp Ref Expression
1 2onn 2o ∈ ω
2 df-3o 3o = suc 2o
3 hash2 ( ♯ ‘ 2o ) = 2
4 2p1e3 ( 2 + 1 ) = 3
5 1 2 3 4 hashp1i ( ♯ ‘ 3o ) = 3