Metamath Proof Explorer


Theorem hash3tpb

Description: A set of size three is a proper unordered triple. (Contributed by AV, 21-Jul-2025)

Ref Expression
Assertion hash3tpb ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )

Proof

Step Hyp Ref Expression
1 hash3tpexb ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )
2 vex 𝑎 ∈ V
3 2 tpid1 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 }
4 vex 𝑏 ∈ V
5 4 tpid2 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 }
6 vex 𝑐 ∈ V
7 6 tpid3 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 }
8 3 5 7 3pm3.2i ( 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } )
9 eleq2 ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑎𝑉𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ) )
10 eleq2 ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑏𝑉𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ) )
11 eleq2 ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑐𝑉𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } ) )
12 9 10 11 3anbi123d ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ↔ ( 𝑎 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑏 , 𝑐 } ) ) )
13 8 12 mpbiri ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) )
14 13 adantl ( ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) )
15 14 pm4.71ri ( ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )
16 15 3exbii ( ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )
17 16 a1i ( 𝑉𝑊 → ( ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) )
18 r3ex ( ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ↔ ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )
19 18 bicomi ( ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) )
20 19 a1i ( 𝑉𝑊 → ( ∃ 𝑎𝑏𝑐 ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )
21 1 17 20 3bitrd ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( ( 𝑎𝑏𝑎𝑐𝑏𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) )