Step |
Hyp |
Ref |
Expression |
1 |
|
hash3tr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |
2 |
|
ax-1 |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
3 |
|
3ianor |
⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ↔ ( ¬ 𝑎 ≠ 𝑏 ∨ ¬ 𝑎 ≠ 𝑐 ∨ ¬ 𝑏 ≠ 𝑐 ) ) |
4 |
|
nne |
⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏 ) |
5 |
|
nne |
⊢ ( ¬ 𝑎 ≠ 𝑐 ↔ 𝑎 = 𝑐 ) |
6 |
|
nne |
⊢ ( ¬ 𝑏 ≠ 𝑐 ↔ 𝑏 = 𝑐 ) |
7 |
4 5 6
|
3orbi123i |
⊢ ( ( ¬ 𝑎 ≠ 𝑏 ∨ ¬ 𝑎 ≠ 𝑐 ∨ ¬ 𝑏 ≠ 𝑐 ) ↔ ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) ) |
8 |
3 7
|
bitri |
⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ↔ ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) ) |
9 |
|
tpeq1 |
⊢ ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑏 , 𝑏 , 𝑐 } ) |
10 |
|
tpidm12 |
⊢ { 𝑏 , 𝑏 , 𝑐 } = { 𝑏 , 𝑐 } |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑏 , 𝑐 } ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑏 , 𝑐 } ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 ) ) |
14 |
|
hashprlei |
⊢ ( { 𝑏 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ) |
15 |
|
breq1 |
⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ↔ 3 ≤ 2 ) ) |
16 |
|
2lt3 |
⊢ 2 < 3 |
17 |
|
2re |
⊢ 2 ∈ ℝ |
18 |
|
3re |
⊢ 3 ∈ ℝ |
19 |
17 18
|
ltnlei |
⊢ ( 2 < 3 ↔ ¬ 3 ≤ 2 ) |
20 |
16 19
|
mpbi |
⊢ ¬ 3 ≤ 2 |
21 |
20
|
pm2.21i |
⊢ ( 3 ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
22 |
15 21
|
biimtrdi |
⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
23 |
22
|
com12 |
⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( { 𝑏 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑏 , 𝑐 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
25 |
14 24
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑏 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
26 |
13 25
|
biimtrdi |
⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
27 |
26
|
adantld |
⊢ ( 𝑉 = { 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
28 |
12 27
|
biimtrdi |
⊢ ( 𝑎 = 𝑏 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
29 |
|
tpeq1 |
⊢ ( 𝑎 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 , 𝑐 } ) |
30 |
|
tpidm13 |
⊢ { 𝑐 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 } |
31 |
29 30
|
eqtrdi |
⊢ ( 𝑎 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑐 , 𝑏 } ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑐 , 𝑏 } ) ) |
33 |
|
fveqeq2 |
⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 ) ) |
34 |
|
hashprlei |
⊢ ( { 𝑐 , 𝑏 } ∈ Fin ∧ ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ) |
35 |
|
breq1 |
⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ↔ 3 ≤ 2 ) ) |
36 |
35 21
|
biimtrdi |
⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
37 |
36
|
com12 |
⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( { 𝑐 , 𝑏 } ∈ Fin ∧ ( ♯ ‘ { 𝑐 , 𝑏 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
39 |
34 38
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑐 , 𝑏 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
40 |
33 39
|
biimtrdi |
⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
41 |
40
|
adantld |
⊢ ( 𝑉 = { 𝑐 , 𝑏 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
42 |
32 41
|
biimtrdi |
⊢ ( 𝑎 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
43 |
|
tpeq2 |
⊢ ( 𝑏 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑐 , 𝑐 } ) |
44 |
|
tpidm23 |
⊢ { 𝑎 , 𝑐 , 𝑐 } = { 𝑎 , 𝑐 } |
45 |
43 44
|
eqtrdi |
⊢ ( 𝑏 = 𝑐 → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑐 } ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑏 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ↔ 𝑉 = { 𝑎 , 𝑐 } ) ) |
47 |
|
fveqeq2 |
⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 ) ) |
48 |
|
hashprlei |
⊢ ( { 𝑎 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ) |
49 |
|
breq1 |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ↔ 3 ≤ 2 ) ) |
50 |
49 21
|
biimtrdi |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
51 |
50
|
com12 |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( { 𝑎 , 𝑐 } ∈ Fin ∧ ( ♯ ‘ { 𝑎 , 𝑐 } ) ≤ 2 ) → ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
53 |
48 52
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑐 } ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
54 |
47 53
|
biimtrdi |
⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( ♯ ‘ 𝑉 ) = 3 → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
55 |
54
|
adantld |
⊢ ( 𝑉 = { 𝑎 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
56 |
46 55
|
biimtrdi |
⊢ ( 𝑏 = 𝑐 → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
57 |
28 42 56
|
3jaoi |
⊢ ( ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) ) |
58 |
57
|
impcomd |
⊢ ( ( 𝑎 = 𝑏 ∨ 𝑎 = 𝑐 ∨ 𝑏 = 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
59 |
8 58
|
sylbi |
⊢ ( ¬ ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) ) |
60 |
2 59
|
pm2.61i |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ) |
61 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |
62 |
60 61
|
jca |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |
63 |
62
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
64 |
63
|
eximdv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
65 |
64
|
2eximdv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ( ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) ) |
66 |
1 65
|
mpd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ) ∧ 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) ) |