Step |
Hyp |
Ref |
Expression |
1 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
2 |
|
hashvnfin |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 3 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ∈ Fin ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ∈ Fin ) ) |
4 |
3
|
imp |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ∈ Fin ) |
5 |
|
hash3 |
⊢ ( ♯ ‘ 3o ) = 3 |
6 |
5
|
eqcomi |
⊢ 3 = ( ♯ ‘ 3o ) |
7 |
6
|
a1i |
⊢ ( 𝑉 ∈ Fin → 3 = ( ♯ ‘ 3o ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 3 ↔ ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ) ) |
9 |
|
3onn |
⊢ 3o ∈ ω |
10 |
|
nnfi |
⊢ ( 3o ∈ ω → 3o ∈ Fin ) |
11 |
9 10
|
ax-mp |
⊢ 3o ∈ Fin |
12 |
|
hashen |
⊢ ( ( 𝑉 ∈ Fin ∧ 3o ∈ Fin ) → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ↔ 𝑉 ≈ 3o ) ) |
13 |
11 12
|
mpan2 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) ↔ 𝑉 ≈ 3o ) ) |
14 |
13
|
biimpd |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 3o ) → 𝑉 ≈ 3o ) ) |
15 |
8 14
|
sylbid |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 3 → 𝑉 ≈ 3o ) ) |
16 |
15
|
adantld |
⊢ ( 𝑉 ∈ Fin → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ≈ 3o ) ) |
17 |
4 16
|
mpcom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → 𝑉 ≈ 3o ) |
18 |
|
en3 |
⊢ ( 𝑉 ≈ 3o → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) = 3 ) → ∃ 𝑎 ∃ 𝑏 ∃ 𝑐 𝑉 = { 𝑎 , 𝑏 , 𝑐 } ) |