Metamath Proof Explorer


Theorem hash4

Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion hash4 ( ♯ ‘ 4o ) = 4

Proof

Step Hyp Ref Expression
1 3onn 3o ∈ ω
2 df-4o 4o = suc 3o
3 hash3 ( ♯ ‘ 3o ) = 3
4 3p1e4 ( 3 + 1 ) = 4
5 1 2 3 4 hashp1i ( ♯ ‘ 4o ) = 4