Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ∅ ) C 𝑘 ) ) |
3 |
|
pweq |
⊢ ( 𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅ ) |
4 |
3
|
rabeqdv |
⊢ ( 𝑤 = ∅ → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
5 |
4
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑤 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑦 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑘 ) ) |
10 |
|
pweq |
⊢ ( 𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦 ) |
11 |
10
|
rabeqdv |
⊢ ( 𝑤 = 𝑦 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
12 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
13 |
9 12
|
eqeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) ) |
17 |
|
pweq |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑤 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
18 |
17
|
rabeqdv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
19 |
18
|
fveq2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝐴 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑤 = 𝐴 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝑘 ) ) |
24 |
|
pweq |
⊢ ( 𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴 ) |
25 |
24
|
rabeqdv |
⊢ ( 𝑤 = 𝐴 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
26 |
25
|
fveq2d |
⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
27 |
23 26
|
eqeq12d |
⊢ ( 𝑤 = 𝐴 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
29 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
30 |
29
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ ∅ ) = 0 ) |
31 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 0 ) ) |
33 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
34 |
|
bcn0 |
⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) |
35 |
33 34
|
ax-mp |
⊢ ( 0 C 0 ) = 1 |
36 |
32 35
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = 1 ) |
37 |
31
|
eqcomd |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 0 = 𝑘 ) |
38 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
39 |
38
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ) |
40 |
|
0ex |
⊢ ∅ ∈ V |
41 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
42 |
41 29
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) ) |
44 |
40 43
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
45 |
39 44
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
46 |
37 45
|
sylibr |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
47 |
|
rabid2 |
⊢ ( 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ↔ ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
48 |
46 47
|
sylibr |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
49 |
48 38
|
eqtr3di |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { ∅ } ) |
50 |
49
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { ∅ } ) ) |
51 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
52 |
40 51
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
53 |
50 52
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 1 ) |
54 |
36 53
|
eqtr4d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
56 |
29
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 𝑘 ) |
57 |
|
bcval3 |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
58 |
33 57
|
mp3an1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
59 |
|
id |
⊢ ( 0 = 𝑘 → 0 = 𝑘 ) |
60 |
|
0z |
⊢ 0 ∈ ℤ |
61 |
|
elfz3 |
⊢ ( 0 ∈ ℤ → 0 ∈ ( 0 ... 0 ) ) |
62 |
60 61
|
ax-mp |
⊢ 0 ∈ ( 0 ... 0 ) |
63 |
59 62
|
eqeltrrdi |
⊢ ( 0 = 𝑘 → 𝑘 ∈ ( 0 ... 0 ) ) |
64 |
63
|
con3i |
⊢ ( ¬ 𝑘 ∈ ( 0 ... 0 ) → ¬ 0 = 𝑘 ) |
65 |
64
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ¬ 0 = 𝑘 ) |
66 |
38
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
67 |
43
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) ) |
68 |
40 67
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
69 |
66 68
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
70 |
65 69
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
71 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
72 |
70 71
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ) |
73 |
72
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ ∅ ) ) |
74 |
73 29
|
eqtrdi |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 0 ) |
75 |
58 74
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
76 |
56 75
|
eqtrid |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
77 |
55 76
|
pm2.61dan |
⊢ ( 𝑘 ∈ ℤ → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
78 |
77
|
rgen |
⊢ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
79 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑗 ) ) |
80 |
|
eqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝑗 ) ) |
81 |
80
|
rabbidv |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) |
82 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑧 ) = 𝑗 ) ) |
83 |
82
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } |
84 |
81 83
|
eqtrdi |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
85 |
84
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
86 |
79 85
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) |
87 |
86
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
88 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑦 ∈ Fin ) |
89 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
90 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
91 |
83
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
92 |
91
|
eqeq2i |
⊢ ( ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
93 |
92
|
ralbii |
⊢ ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
94 |
90 93
|
sylibr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) |
95 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑘 ∈ ℤ ) |
96 |
88 89 94 95
|
hashbclem |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
97 |
96
|
expr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
98 |
97
|
ralrimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
99 |
87 98
|
syl5bi |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
100 |
7 14 21 28 78 99
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
101 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) |
102 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
103 |
102
|
rabbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) |
104 |
103
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
105 |
101 104
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) ) |
106 |
105
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
107 |
100 106
|
sylan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |