| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ( ♯ ‘ ∅ ) C 𝑘 ) ) | 
						
							| 3 |  | pweq | ⊢ ( 𝑤  =  ∅  →  𝒫  𝑤  =  𝒫  ∅ ) | 
						
							| 4 | 3 | rabeqdv | ⊢ ( 𝑤  =  ∅  →  { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 6 | 2 5 | eqeq12d | ⊢ ( 𝑤  =  ∅  →  ( ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑤  =  ∅  →  ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ( ♯ ‘ 𝑦 ) C 𝑘 ) ) | 
						
							| 10 |  | pweq | ⊢ ( 𝑤  =  𝑦  →  𝒫  𝑤  =  𝒫  𝑦 ) | 
						
							| 11 | 10 | rabeqdv | ⊢ ( 𝑤  =  𝑦  →  { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 13 | 9 12 | eqeq12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 ) ) | 
						
							| 17 |  | pweq | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  𝒫  𝑤  =  𝒫  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 18 | 17 | rabeqdv | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 20 | 16 19 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑤  =  𝐴  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑤  =  𝐴  →  ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ( ♯ ‘ 𝐴 ) C 𝑘 ) ) | 
						
							| 24 |  | pweq | ⊢ ( 𝑤  =  𝐴  →  𝒫  𝑤  =  𝒫  𝐴 ) | 
						
							| 25 | 24 | rabeqdv | ⊢ ( 𝑤  =  𝐴  →  { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑤  =  𝐴  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 27 | 23 26 | eqeq12d | ⊢ ( 𝑤  =  𝐴  →  ( ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( 𝑤  =  𝐴  →  ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑤  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 29 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ♯ ‘ ∅ )  =  0 ) | 
						
							| 31 |  | elfz1eq | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  𝑘  =  0 ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( 0 C 0 ) ) | 
						
							| 33 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 34 |  | bcn0 | ⊢ ( 0  ∈  ℕ0  →  ( 0 C 0 )  =  1 ) | 
						
							| 35 | 33 34 | ax-mp | ⊢ ( 0 C 0 )  =  1 | 
						
							| 36 | 32 35 | eqtrdi | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  1 ) | 
						
							| 37 | 31 | eqcomd | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  0  =  𝑘 ) | 
						
							| 38 |  | pw0 | ⊢ 𝒫  ∅  =  { ∅ } | 
						
							| 39 | 38 | raleqi | ⊢ ( ∀ 𝑥  ∈  𝒫  ∅ ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ∀ 𝑥  ∈  { ∅ } ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 40 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 42 | 41 29 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 43 | 42 | eqeq1d | ⊢ ( 𝑥  =  ∅  →  ( ( ♯ ‘ 𝑥 )  =  𝑘  ↔  0  =  𝑘 ) ) | 
						
							| 44 | 40 43 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ∅ } ( ♯ ‘ 𝑥 )  =  𝑘  ↔  0  =  𝑘 ) | 
						
							| 45 | 39 44 | bitri | ⊢ ( ∀ 𝑥  ∈  𝒫  ∅ ( ♯ ‘ 𝑥 )  =  𝑘  ↔  0  =  𝑘 ) | 
						
							| 46 | 37 45 | sylibr | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ∀ 𝑥  ∈  𝒫  ∅ ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 47 |  | rabid2 | ⊢ ( 𝒫  ∅  =  { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  ↔  ∀ 𝑥  ∈  𝒫  ∅ ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  𝒫  ∅  =  { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 49 | 48 38 | eqtr3di | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { ∅ } ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { ∅ } ) ) | 
						
							| 51 |  | hashsng | ⊢ ( ∅  ∈  V  →  ( ♯ ‘ { ∅ } )  =  1 ) | 
						
							| 52 | 40 51 | ax-mp | ⊢ ( ♯ ‘ { ∅ } )  =  1 | 
						
							| 53 | 50 52 | eqtrdi | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  1 ) | 
						
							| 54 | 36 53 | eqtr4d | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑘  ∈  ( 0 ... 0 ) )  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 56 | 29 | oveq1i | ⊢ ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( 0 C 𝑘 ) | 
						
							| 57 |  | bcval3 | ⊢ ( ( 0  ∈  ℕ0  ∧  𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( 0 C 𝑘 )  =  0 ) | 
						
							| 58 | 33 57 | mp3an1 | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( 0 C 𝑘 )  =  0 ) | 
						
							| 59 |  | id | ⊢ ( 0  =  𝑘  →  0  =  𝑘 ) | 
						
							| 60 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 61 |  | elfz3 | ⊢ ( 0  ∈  ℤ  →  0  ∈  ( 0 ... 0 ) ) | 
						
							| 62 | 60 61 | ax-mp | ⊢ 0  ∈  ( 0 ... 0 ) | 
						
							| 63 | 59 62 | eqeltrrdi | ⊢ ( 0  =  𝑘  →  𝑘  ∈  ( 0 ... 0 ) ) | 
						
							| 64 | 63 | con3i | ⊢ ( ¬  𝑘  ∈  ( 0 ... 0 )  →  ¬  0  =  𝑘 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ¬  0  =  𝑘 ) | 
						
							| 66 | 38 | raleqi | ⊢ ( ∀ 𝑥  ∈  𝒫  ∅ ¬  ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ∀ 𝑥  ∈  { ∅ } ¬  ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 67 | 43 | notbid | ⊢ ( 𝑥  =  ∅  →  ( ¬  ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ¬  0  =  𝑘 ) ) | 
						
							| 68 | 40 67 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ∅ } ¬  ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ¬  0  =  𝑘 ) | 
						
							| 69 | 66 68 | bitri | ⊢ ( ∀ 𝑥  ∈  𝒫  ∅ ¬  ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ¬  0  =  𝑘 ) | 
						
							| 70 | 65 69 | sylibr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ∀ 𝑥  ∈  𝒫  ∅ ¬  ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 71 |  | rabeq0 | ⊢ ( { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  ∅  ↔  ∀ 𝑥  ∈  𝒫  ∅ ¬  ( ♯ ‘ 𝑥 )  =  𝑘 ) | 
						
							| 72 | 70 71 | sylibr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  ∅ ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 74 | 73 29 | eqtrdi | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  0 ) | 
						
							| 75 | 58 74 | eqtr4d | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( 0 C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 76 | 56 75 | eqtrid | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ¬  𝑘  ∈  ( 0 ... 0 ) )  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 77 | 55 76 | pm2.61dan | ⊢ ( 𝑘  ∈  ℤ  →  ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 78 | 77 | rgen | ⊢ ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ ∅ ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ∅  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 79 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ( ♯ ‘ 𝑦 ) C 𝑗 ) ) | 
						
							| 80 |  | eqeq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ( ♯ ‘ 𝑥 )  =  𝑗 ) ) | 
						
							| 81 | 80 | rabbidv | ⊢ ( 𝑘  =  𝑗  →  { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } ) | 
						
							| 82 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( ♯ ‘ 𝑥 )  =  𝑗  ↔  ( ♯ ‘ 𝑧 )  =  𝑗 ) ) | 
						
							| 83 | 82 | cbvrabv | ⊢ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 }  =  { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } | 
						
							| 84 | 81 83 | eqtrdi | ⊢ ( 𝑘  =  𝑗  →  { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) | 
						
							| 85 | 84 | fveq2d | ⊢ ( 𝑘  =  𝑗  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) | 
						
							| 86 | 79 85 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) ) | 
						
							| 87 | 86 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) | 
						
							| 88 |  | simpll | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 89 |  | simplr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 90 |  | simprr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) | 
						
							| 91 | 83 | fveq2i | ⊢ ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) | 
						
							| 92 | 91 | eqeq2i | ⊢ ( ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  ↔  ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) | 
						
							| 93 | 92 | ralbii | ⊢ ( ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  ↔  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) | 
						
							| 94 | 90 93 | sylibr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } ) ) | 
						
							| 95 |  | simprl | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 96 | 88 89 94 95 | hashbclem | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑘  ∈  ℤ  ∧  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } ) ) )  →  ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 97 | 96 | expr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  𝑘  ∈  ℤ )  →  ( ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } )  →  ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 98 | 97 | ralrimdva | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 )  =  ( ♯ ‘ { 𝑧  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑧 )  =  𝑗 } )  →  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 99 | 87 98 | biimtrid | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝑦  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  →  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 100 | 7 14 21 28 78 99 | findcard2s | ⊢ ( 𝐴  ∈  Fin  →  ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 101 |  | oveq2 | ⊢ ( 𝑘  =  𝐾  →  ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) | 
						
							| 102 |  | eqeq2 | ⊢ ( 𝑘  =  𝐾  →  ( ( ♯ ‘ 𝑥 )  =  𝑘  ↔  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 103 | 102 | rabbidv | ⊢ ( 𝑘  =  𝐾  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) | 
						
							| 104 | 103 | fveq2d | ⊢ ( 𝑘  =  𝐾  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) | 
						
							| 105 | 101 104 | eqeq12d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ↔  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) ) | 
						
							| 106 | 105 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑘 } )  ∧  𝐾  ∈  ℤ )  →  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) | 
						
							| 107 | 100 106 | sylan | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐾  ∈  ℤ )  →  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) |