| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ∅ ) C 𝑘 ) ) |
| 3 |
|
pweq |
⊢ ( 𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅ ) |
| 4 |
3
|
rabeqdv |
⊢ ( 𝑤 = ∅ → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 6 |
2 5
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑤 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑦 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑘 ) ) |
| 10 |
|
pweq |
⊢ ( 𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦 ) |
| 11 |
10
|
rabeqdv |
⊢ ( 𝑤 = 𝑦 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 13 |
9 12
|
eqeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) ) |
| 17 |
|
pweq |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑤 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
| 18 |
17
|
rabeqdv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 20 |
16 19
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝐴 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑤 = 𝐴 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝑘 ) ) |
| 24 |
|
pweq |
⊢ ( 𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴 ) |
| 25 |
24
|
rabeqdv |
⊢ ( 𝑤 = 𝐴 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 27 |
23 26
|
eqeq12d |
⊢ ( 𝑤 = 𝐴 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 29 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 30 |
29
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ ∅ ) = 0 ) |
| 31 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 0 ) ) |
| 33 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 34 |
|
bcn0 |
⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) |
| 35 |
33 34
|
ax-mp |
⊢ ( 0 C 0 ) = 1 |
| 36 |
32 35
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = 1 ) |
| 37 |
31
|
eqcomd |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 0 = 𝑘 ) |
| 38 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 39 |
38
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 40 |
|
0ex |
⊢ ∅ ∈ V |
| 41 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 42 |
41 29
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) ) |
| 44 |
40 43
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
| 45 |
39 44
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
| 46 |
37 45
|
sylibr |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 47 |
|
rabid2 |
⊢ ( 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ↔ ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 48 |
46 47
|
sylibr |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 49 |
48 38
|
eqtr3di |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { ∅ } ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { ∅ } ) ) |
| 51 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
| 52 |
40 51
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
| 53 |
50 52
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 1 ) |
| 54 |
36 53
|
eqtr4d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 56 |
29
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 𝑘 ) |
| 57 |
|
bcval3 |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
| 58 |
33 57
|
mp3an1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
| 59 |
|
id |
⊢ ( 0 = 𝑘 → 0 = 𝑘 ) |
| 60 |
|
0z |
⊢ 0 ∈ ℤ |
| 61 |
|
elfz3 |
⊢ ( 0 ∈ ℤ → 0 ∈ ( 0 ... 0 ) ) |
| 62 |
60 61
|
ax-mp |
⊢ 0 ∈ ( 0 ... 0 ) |
| 63 |
59 62
|
eqeltrrdi |
⊢ ( 0 = 𝑘 → 𝑘 ∈ ( 0 ... 0 ) ) |
| 64 |
63
|
con3i |
⊢ ( ¬ 𝑘 ∈ ( 0 ... 0 ) → ¬ 0 = 𝑘 ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ¬ 0 = 𝑘 ) |
| 66 |
38
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 67 |
43
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) ) |
| 68 |
40 67
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
| 69 |
66 68
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
| 70 |
65 69
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 71 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 72 |
70 71
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ) |
| 73 |
72
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ ∅ ) ) |
| 74 |
73 29
|
eqtrdi |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 0 ) |
| 75 |
58 74
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 76 |
56 75
|
eqtrid |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 77 |
55 76
|
pm2.61dan |
⊢ ( 𝑘 ∈ ℤ → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 78 |
77
|
rgen |
⊢ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 79 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑗 ) ) |
| 80 |
|
eqeq2 |
⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝑗 ) ) |
| 81 |
80
|
rabbidv |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) |
| 82 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑧 ) = 𝑗 ) ) |
| 83 |
82
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } |
| 84 |
81 83
|
eqtrdi |
⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 86 |
79 85
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) |
| 87 |
86
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 88 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑦 ∈ Fin ) |
| 89 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 90 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 91 |
83
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
| 92 |
91
|
eqeq2i |
⊢ ( ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 93 |
92
|
ralbii |
⊢ ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 94 |
90 93
|
sylibr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) |
| 95 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑘 ∈ ℤ ) |
| 96 |
88 89 94 95
|
hashbclem |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 97 |
96
|
expr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 98 |
97
|
ralrimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 99 |
87 98
|
biimtrid |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 100 |
7 14 21 28 78 99
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 101 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) |
| 102 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
| 103 |
102
|
rabbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) |
| 104 |
103
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 105 |
101 104
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) ) |
| 106 |
105
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 107 |
100 106
|
sylan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |