Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
1
|
hashbcval |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) ) |
4 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
5 |
|
hashbc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) C 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) ) |
7 |
3 6
|
eqtr4d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) ) = ( ( ♯ ‘ 𝐴 ) C 𝑁 ) ) |