| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 | 1 | hashbcval | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 𝐶 𝑁 )  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑁 } ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑁 } ) ) | 
						
							| 4 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | hashbc | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑁  ∈  ℤ )  →  ( ( ♯ ‘ 𝐴 ) C 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑁 } ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝐴 ) C 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑁 } ) ) | 
						
							| 7 | 3 6 | eqtr4d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) )  =  ( ( ♯ ‘ 𝐴 ) C 𝑁 ) ) |