Metamath Proof Explorer


Theorem hashbc2

Description: The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion hashbc2 ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) ) = ( ( ♯ ‘ 𝐴 ) C 𝑁 ) )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 1 hashbcval ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
3 2 fveq2d ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) )
4 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
5 hashbc ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) )
6 4 5 sylan2 ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) C 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) )
7 3 6 eqtr4d ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝐴 𝐶 𝑁 ) ) = ( ( ♯ ‘ 𝐴 ) C 𝑁 ) )