Step |
Hyp |
Ref |
Expression |
1 |
|
hashbc.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
hashbc.2 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) |
3 |
|
hashbc.3 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) |
4 |
|
hashbc.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
5 |
|
oveq2 |
⊢ ( 𝑗 = 𝐾 → ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) |
6 |
|
eqeq2 |
⊢ ( 𝑗 = 𝐾 → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑗 = 𝐾 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) |
8 |
7
|
fveq2d |
⊢ ( 𝑗 = 𝐾 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
9 |
5 8
|
eqeq12d |
⊢ ( 𝑗 = 𝐾 → ( ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) ) |
10 |
9 3 4
|
rspcdva |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
11 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) |
12 |
11
|
sspwi |
⊢ 𝒫 𝐴 ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) |
13 |
12
|
sseli |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
15 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
16 |
15
|
ssneld |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → ( ¬ 𝑧 ∈ 𝐴 → ¬ 𝑧 ∈ 𝑥 ) ) |
17 |
2 16
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ¬ 𝑧 ∈ 𝑥 ) |
18 |
14 17
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) |
19 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑥 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
20 |
|
uncom |
⊢ ( 𝐴 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝐴 ) |
21 |
19 20
|
sseqtrdi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
23 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ¬ 𝑧 ∈ 𝑥 ) |
24 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑥 ) |
25 |
23 24
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝑥 ∩ { 𝑧 } ) = ∅ ) |
26 |
|
disjssun |
⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ → ( 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) |
28 |
22 27
|
mpbid |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
29 |
|
vex |
⊢ 𝑥 ∈ V |
30 |
29
|
elpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
31 |
28 30
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ 𝒫 𝐴 ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) → 𝑥 ∈ 𝒫 𝐴 ) |
33 |
18 32
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
35 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
36 |
34 35
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) ) |
37 |
36
|
rabbidva2 |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
39 |
10 38
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
40 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) |
41 |
|
eqeq2 |
⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ) ) |
42 |
41
|
rabbidv |
⊢ ( 𝑗 = ( 𝐾 − 1 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) |
43 |
42
|
fveq2d |
⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
44 |
40 43
|
eqeq12d |
⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) ) |
45 |
|
peano2zm |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) |
46 |
4 45
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℤ ) |
47 |
44 3 46
|
rspcdva |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
48 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
49 |
1 48
|
sylib |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ Fin ) |
50 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ Fin → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ V ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ V ) |
52 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
53 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
54 |
1 52 53
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
55 |
|
pwfi |
⊢ ( ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ↔ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
56 |
54 55
|
sylib |
⊢ ( 𝜑 → 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
57 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) |
58 |
|
ssfi |
⊢ ( ( 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
59 |
56 57 58
|
sylancl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
60 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑢 → ( ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) |
61 |
60
|
elrab |
⊢ ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ↔ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) |
62 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ) ) |
63 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) |
64 |
62 63
|
anbi12d |
⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ∧ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) ) |
65 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝐴 → 𝑢 ⊆ 𝐴 ) |
66 |
65
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝑢 ⊆ 𝐴 ) |
67 |
|
unss1 |
⊢ ( 𝑢 ⊆ 𝐴 → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
69 |
|
vex |
⊢ 𝑢 ∈ V |
70 |
|
snex |
⊢ { 𝑧 } ∈ V |
71 |
69 70
|
unex |
⊢ ( 𝑢 ∪ { 𝑧 } ) ∈ V |
72 |
71
|
elpw |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
73 |
68 72
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
74 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐴 ∈ Fin ) |
75 |
74 66
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝑢 ∈ Fin ) |
76 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → { 𝑧 } ∈ Fin ) |
77 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ¬ 𝑧 ∈ 𝐴 ) |
78 |
66 77
|
ssneldd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ¬ 𝑧 ∈ 𝑢 ) |
79 |
|
disjsn |
⊢ ( ( 𝑢 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑢 ) |
80 |
78 79
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
81 |
|
hashun |
⊢ ( ( 𝑢 ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( 𝑢 ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
82 |
75 76 80 81
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
83 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) |
84 |
|
hashsng |
⊢ ( 𝑧 ∈ V → ( ♯ ‘ { 𝑧 } ) = 1 ) |
85 |
84
|
elv |
⊢ ( ♯ ‘ { 𝑧 } ) = 1 |
86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ { 𝑧 } ) = 1 ) |
87 |
83 86
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( 𝐾 − 1 ) + 1 ) ) |
88 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
89 |
88
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℂ ) |
90 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
91 |
|
npcan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
92 |
89 90 91
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
93 |
82 87 92
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) |
94 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) |
95 |
|
vex |
⊢ 𝑧 ∈ V |
96 |
95
|
snss |
⊢ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) ) |
97 |
94 96
|
mpbir |
⊢ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) |
98 |
93 97
|
jctil |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ∧ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) |
99 |
64 73 98
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
100 |
99
|
ex |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
101 |
61 100
|
syl5bi |
⊢ ( 𝜑 → ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
102 |
|
eleq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑣 ) ) |
103 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑣 → ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) |
104 |
102 103
|
anbi12d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) |
105 |
104
|
elrab |
⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ↔ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) |
106 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑣 ∖ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) = ( 𝐾 − 1 ) ) ) |
107 |
|
elpwi |
⊢ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑣 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
108 |
107
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑣 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
109 |
108 20
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑣 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
110 |
|
ssundif |
⊢ ( 𝑣 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) |
111 |
109 110
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) |
112 |
|
vex |
⊢ 𝑣 ∈ V |
113 |
112
|
difexi |
⊢ ( 𝑣 ∖ { 𝑧 } ) ∈ V |
114 |
113
|
elpw |
⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∈ 𝒫 𝐴 ↔ ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) |
115 |
111 114
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ 𝒫 𝐴 ) |
116 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝐴 ∈ Fin ) |
117 |
116 111
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ Fin ) |
118 |
|
hashcl |
⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∈ Fin → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℕ0 ) |
119 |
117 118
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℕ0 ) |
120 |
119
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℂ ) |
121 |
|
pncan |
⊢ ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ) |
122 |
120 90 121
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ) |
123 |
|
undif1 |
⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( 𝑣 ∪ { 𝑧 } ) |
124 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑧 ∈ 𝑣 ) |
125 |
124
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ⊆ 𝑣 ) |
126 |
|
ssequn2 |
⊢ ( { 𝑧 } ⊆ 𝑣 ↔ ( 𝑣 ∪ { 𝑧 } ) = 𝑣 ) |
127 |
125 126
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∪ { 𝑧 } ) = 𝑣 ) |
128 |
123 127
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑣 ) |
129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ♯ ‘ 𝑣 ) ) |
130 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ∈ Fin ) |
131 |
|
disjdifr |
⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ |
132 |
131
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) |
133 |
|
hashun |
⊢ ( ( ( 𝑣 ∖ { 𝑧 } ) ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) ) |
134 |
117 130 132 133
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) ) |
135 |
85
|
oveq2i |
⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) |
136 |
134 135
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) ) |
137 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ 𝑣 ) = 𝐾 ) |
138 |
129 136 137
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) = 𝐾 ) |
139 |
138
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( 𝐾 − 1 ) ) |
140 |
122 139
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) = ( 𝐾 − 1 ) ) |
141 |
106 115 140
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) |
142 |
141
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
143 |
105 142
|
syl5bi |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
144 |
61 105
|
anbi12i |
⊢ ( ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∧ 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) ) |
145 |
|
simp3rl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑧 ∈ 𝑣 ) |
146 |
145
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ⊆ 𝑣 ) |
147 |
|
incom |
⊢ ( { 𝑧 } ∩ 𝑢 ) = ( 𝑢 ∩ { 𝑧 } ) |
148 |
80
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
149 |
147 148
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( { 𝑧 } ∩ 𝑢 ) = ∅ ) |
150 |
|
uneqdifeq |
⊢ ( ( { 𝑧 } ⊆ 𝑣 ∧ ( { 𝑧 } ∩ 𝑢 ) = ∅ ) → ( ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) ) |
151 |
146 149 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) ) |
152 |
151
|
bicomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) ) |
153 |
|
eqcom |
⊢ ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) |
154 |
|
eqcom |
⊢ ( 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) = 𝑣 ) |
155 |
|
uncom |
⊢ ( 𝑢 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑢 ) |
156 |
155
|
eqeq1i |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) = 𝑣 ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) |
157 |
154 156
|
bitri |
⊢ ( 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) |
158 |
152 153 157
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
159 |
158
|
3expib |
⊢ ( 𝜑 → ( ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) ) |
160 |
144 159
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∧ 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) ) |
161 |
51 59 101 143 160
|
en3d |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
162 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ⊆ 𝒫 𝐴 |
163 |
|
ssfi |
⊢ ( ( 𝒫 𝐴 ∈ Fin ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ⊆ 𝒫 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ) |
164 |
49 162 163
|
sylancl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ) |
165 |
|
hashen |
⊢ ( ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
166 |
164 59 165
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
167 |
161 166
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
168 |
47 167
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
169 |
39 168
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
170 |
52
|
a1i |
⊢ ( 𝜑 → { 𝑧 } ∈ Fin ) |
171 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) |
172 |
2 171
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
173 |
|
hashun |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( 𝐴 ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
174 |
1 170 172 173
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
175 |
85
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) |
176 |
174 175
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) |
178 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
179 |
1 178
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
180 |
|
bcpasc |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) |
181 |
179 4 180
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) |
182 |
177 181
|
eqtr4d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) ) |
183 |
|
pm2.1 |
⊢ ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) |
184 |
183
|
biantrur |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
185 |
|
andir |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
186 |
184 185
|
bitri |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
187 |
186
|
rabbii |
⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } |
188 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } |
189 |
187 188
|
eqtr4i |
⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
190 |
189
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
191 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) |
192 |
|
ssfi |
⊢ ( ( 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
193 |
56 191 192
|
sylancl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
194 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } |
195 |
|
simprl |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) → 𝑧 ∈ 𝑥 ) |
196 |
|
simpll |
⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) → ¬ 𝑧 ∈ 𝑥 ) |
197 |
195 196
|
pm2.65i |
⊢ ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
198 |
197
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
199 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
200 |
198 199
|
mpbir |
⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } = ∅ |
201 |
194 200
|
eqtri |
⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ |
202 |
201
|
a1i |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ ) |
203 |
|
hashun |
⊢ ( ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ∧ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
204 |
193 59 202 203
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
205 |
190 204
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
206 |
169 182 205
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |