| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashbc.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hashbc.2 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 3 |  | hashbc.3 | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℤ ( ( ♯ ‘ 𝐴 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } ) ) | 
						
							| 4 |  | hashbc.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑗  =  𝐾  →  ( ( ♯ ‘ 𝐴 ) C 𝑗 )  =  ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) | 
						
							| 6 |  | eqeq2 | ⊢ ( 𝑗  =  𝐾  →  ( ( ♯ ‘ 𝑥 )  =  𝑗  ↔  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝑗  =  𝐾  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 }  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑗  =  𝐾  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) | 
						
							| 9 | 5 8 | eqeq12d | ⊢ ( 𝑗  =  𝐾  →  ( ( ( ♯ ‘ 𝐴 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  ↔  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) ) | 
						
							| 10 | 9 3 4 | rspcdva | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) | 
						
							| 11 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 12 | 11 | sspwi | ⊢ 𝒫  𝐴  ⊆  𝒫  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 13 | 12 | sseli | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴 )  →  𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 15 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 16 | 15 | ssneld | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ¬  𝑧  ∈  𝐴  →  ¬  𝑧  ∈  𝑥 ) ) | 
						
							| 17 | 2 16 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴 )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 18 | 14 17 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴 )  →  ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 ) ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  →  𝑥  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 20 |  | uncom | ⊢ ( 𝐴  ∪  { 𝑧 } )  =  ( { 𝑧 }  ∪  𝐴 ) | 
						
							| 21 | 19 20 | sseqtrdi | ⊢ ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  →  𝑥  ⊆  ( { 𝑧 }  ∪  𝐴 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  𝑥  ⊆  ( { 𝑧 }  ∪  𝐴 ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 24 |  | disjsn | ⊢ ( ( 𝑥  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝑥 ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  ( 𝑥  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 26 |  | disjssun | ⊢ ( ( 𝑥  ∩  { 𝑧 } )  =  ∅  →  ( 𝑥  ⊆  ( { 𝑧 }  ∪  𝐴 )  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  ( 𝑥  ⊆  ( { 𝑧 }  ∪  𝐴 )  ↔  𝑥  ⊆  𝐴 ) ) | 
						
							| 28 | 22 27 | mpbid | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  𝑥  ⊆  𝐴 ) | 
						
							| 29 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 30 | 29 | elpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 31 | 28 30 | sylibr | ⊢ ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 ) )  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 33 | 18 32 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝒫  𝐴  ↔  ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 ) ) ) | 
						
							| 34 | 33 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) | 
						
							| 35 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) | 
						
							| 36 | 34 35 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) ) | 
						
							| 37 | 36 | rabbidva2 | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 }  =  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 39 | 10 38 | eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝐾  −  1 )  →  ( ( ♯ ‘ 𝐴 ) C 𝑗 )  =  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) ) ) | 
						
							| 41 |  | eqeq2 | ⊢ ( 𝑗  =  ( 𝐾  −  1 )  →  ( ( ♯ ‘ 𝑥 )  =  𝑗  ↔  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) ) ) | 
						
							| 42 | 41 | rabbidv | ⊢ ( 𝑗  =  ( 𝐾  −  1 )  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 }  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( 𝑗  =  ( 𝐾  −  1 )  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) ) | 
						
							| 44 | 40 43 | eqeq12d | ⊢ ( 𝑗  =  ( 𝐾  −  1 )  →  ( ( ( ♯ ‘ 𝐴 ) C 𝑗 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  𝑗 } )  ↔  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) ) ) | 
						
							| 45 |  | peano2zm | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 46 | 4 45 | syl | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 47 | 44 3 46 | rspcdva | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) ) | 
						
							| 48 |  | pwfi | ⊢ ( 𝐴  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) | 
						
							| 49 | 1 48 | sylib | ⊢ ( 𝜑  →  𝒫  𝐴  ∈  Fin ) | 
						
							| 50 |  | rabexg | ⊢ ( 𝒫  𝐴  ∈  Fin  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∈  V ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∈  V ) | 
						
							| 52 |  | snfi | ⊢ { 𝑧 }  ∈  Fin | 
						
							| 53 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑧 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 54 | 1 52 53 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 55 |  | pwfi | ⊢ ( ( 𝐴  ∪  { 𝑧 } )  ∈  Fin  ↔  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 56 | 54 55 | sylib | ⊢ ( 𝜑  →  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 57 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ⊆  𝒫  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 58 |  | ssfi | ⊢ ( ( 𝒫  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin  ∧  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ⊆  𝒫  ( 𝐴  ∪  { 𝑧 } ) )  →  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin ) | 
						
							| 59 | 56 57 58 | sylancl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin ) | 
						
							| 60 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑢  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 )  ↔  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) ) | 
						
							| 61 | 60 | elrab | ⊢ ( 𝑢  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ↔  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) ) | 
						
							| 62 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝑢  ∪  { 𝑧 } )  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  ( 𝑢  ∪  { 𝑧 } ) ) ) | 
						
							| 63 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑢  ∪  { 𝑧 } )  →  ( ( ♯ ‘ 𝑥 )  =  𝐾  ↔  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  𝐾 ) ) | 
						
							| 64 | 62 63 | anbi12d | ⊢ ( 𝑥  =  ( 𝑢  ∪  { 𝑧 } )  →  ( ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( 𝑧  ∈  ( 𝑢  ∪  { 𝑧 } )  ∧  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  𝐾 ) ) ) | 
						
							| 65 |  | elpwi | ⊢ ( 𝑢  ∈  𝒫  𝐴  →  𝑢  ⊆  𝐴 ) | 
						
							| 66 | 65 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  𝑢  ⊆  𝐴 ) | 
						
							| 67 |  | unss1 | ⊢ ( 𝑢  ⊆  𝐴  →  ( 𝑢  ∪  { 𝑧 } )  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑧 } )  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 69 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 70 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 71 | 69 70 | unex | ⊢ ( 𝑢  ∪  { 𝑧 } )  ∈  V | 
						
							| 72 | 71 | elpw | ⊢ ( ( 𝑢  ∪  { 𝑧 } )  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ↔  ( 𝑢  ∪  { 𝑧 } )  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 73 | 68 72 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑧 } )  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 74 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 75 | 74 66 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  𝑢  ∈  Fin ) | 
						
							| 76 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  { 𝑧 }  ∈  Fin ) | 
						
							| 77 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 78 | 66 77 | ssneldd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ¬  𝑧  ∈  𝑢 ) | 
						
							| 79 |  | disjsn | ⊢ ( ( 𝑢  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝑢 ) | 
						
							| 80 | 78 79 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( 𝑢  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 81 |  | hashun | ⊢ ( ( 𝑢  ∈  Fin  ∧  { 𝑧 }  ∈  Fin  ∧  ( 𝑢  ∩  { 𝑧 } )  =  ∅ )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝑢 )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 82 | 75 76 80 81 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝑢 )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 83 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) | 
						
							| 84 |  | hashsng | ⊢ ( 𝑧  ∈  V  →  ( ♯ ‘ { 𝑧 } )  =  1 ) | 
						
							| 85 | 84 | elv | ⊢ ( ♯ ‘ { 𝑧 } )  =  1 | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ♯ ‘ { 𝑧 } )  =  1 ) | 
						
							| 87 | 83 86 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ( ♯ ‘ 𝑢 )  +  ( ♯ ‘ { 𝑧 } ) )  =  ( ( 𝐾  −  1 )  +  1 ) ) | 
						
							| 88 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  𝐾  ∈  ℤ ) | 
						
							| 89 | 88 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  𝐾  ∈  ℂ ) | 
						
							| 90 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 91 |  | npcan | ⊢ ( ( 𝐾  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 92 | 89 90 91 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 93 | 82 87 92 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  𝐾 ) | 
						
							| 94 |  | ssun2 | ⊢ { 𝑧 }  ⊆  ( 𝑢  ∪  { 𝑧 } ) | 
						
							| 95 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 96 | 95 | snss | ⊢ ( 𝑧  ∈  ( 𝑢  ∪  { 𝑧 } )  ↔  { 𝑧 }  ⊆  ( 𝑢  ∪  { 𝑧 } ) ) | 
						
							| 97 | 94 96 | mpbir | ⊢ 𝑧  ∈  ( 𝑢  ∪  { 𝑧 } ) | 
						
							| 98 | 93 97 | jctil | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( 𝑧  ∈  ( 𝑢  ∪  { 𝑧 } )  ∧  ( ♯ ‘ ( 𝑢  ∪  { 𝑧 } ) )  =  𝐾 ) ) | 
						
							| 99 | 64 73 98 | elrabd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) ) )  →  ( 𝑢  ∪  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) | 
						
							| 100 | 99 | ex | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  →  ( 𝑢  ∪  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 101 | 61 100 | biimtrid | ⊢ ( 𝜑  →  ( 𝑢  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  →  ( 𝑢  ∪  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 102 |  | eleq2 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑣 ) ) | 
						
							| 103 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑣  →  ( ( ♯ ‘ 𝑥 )  =  𝐾  ↔  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 104 | 102 103 | anbi12d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 105 | 104 | elrab | ⊢ ( 𝑣  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ↔  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 106 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑣  ∖  { 𝑧 } )  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 )  ↔  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  =  ( 𝐾  −  1 ) ) ) | 
						
							| 107 |  | elpwi | ⊢ ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  →  𝑣  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 108 | 107 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  𝑣  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 109 | 108 20 | sseqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  𝑣  ⊆  ( { 𝑧 }  ∪  𝐴 ) ) | 
						
							| 110 |  | ssundif | ⊢ ( 𝑣  ⊆  ( { 𝑧 }  ∪  𝐴 )  ↔  ( 𝑣  ∖  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 111 | 109 110 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑣  ∖  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 112 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 113 | 112 | difexi | ⊢ ( 𝑣  ∖  { 𝑧 } )  ∈  V | 
						
							| 114 | 113 | elpw | ⊢ ( ( 𝑣  ∖  { 𝑧 } )  ∈  𝒫  𝐴  ↔  ( 𝑣  ∖  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 115 | 111 114 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑣  ∖  { 𝑧 } )  ∈  𝒫  𝐴 ) | 
						
							| 116 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 117 | 116 111 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑣  ∖  { 𝑧 } )  ∈  Fin ) | 
						
							| 118 |  | hashcl | ⊢ ( ( 𝑣  ∖  { 𝑧 } )  ∈  Fin  →  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  ∈  ℕ0 ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  ∈  ℕ0 ) | 
						
							| 120 | 119 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  ∈  ℂ ) | 
						
							| 121 |  | pncan | ⊢ ( ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 )  −  1 )  =  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) ) ) | 
						
							| 122 | 120 90 121 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 )  −  1 )  =  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) ) ) | 
						
							| 123 |  | undif1 | ⊢ ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } )  =  ( 𝑣  ∪  { 𝑧 } ) | 
						
							| 124 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  𝑧  ∈  𝑣 ) | 
						
							| 125 | 124 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  { 𝑧 }  ⊆  𝑣 ) | 
						
							| 126 |  | ssequn2 | ⊢ ( { 𝑧 }  ⊆  𝑣  ↔  ( 𝑣  ∪  { 𝑧 } )  =  𝑣 ) | 
						
							| 127 | 125 126 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑣  ∪  { 𝑧 } )  =  𝑣 ) | 
						
							| 128 | 123 127 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } )  =  𝑣 ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } ) )  =  ( ♯ ‘ 𝑣 ) ) | 
						
							| 130 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  { 𝑧 }  ∈  Fin ) | 
						
							| 131 |  | disjdifr | ⊢ ( ( 𝑣  ∖  { 𝑧 } )  ∩  { 𝑧 } )  =  ∅ | 
						
							| 132 | 131 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( 𝑣  ∖  { 𝑧 } )  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 133 |  | hashun | ⊢ ( ( ( 𝑣  ∖  { 𝑧 } )  ∈  Fin  ∧  { 𝑧 }  ∈  Fin  ∧  ( ( 𝑣  ∖  { 𝑧 } )  ∩  { 𝑧 } )  =  ∅ )  →  ( ♯ ‘ ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 134 | 117 130 132 133 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 135 | 85 | oveq2i | ⊢ ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  ( ♯ ‘ { 𝑧 } ) )  =  ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 ) | 
						
							| 136 | 134 135 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( ( 𝑣  ∖  { 𝑧 } )  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 ) ) | 
						
							| 137 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ 𝑣 )  =  𝐾 ) | 
						
							| 138 | 129 136 137 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 )  =  𝐾 ) | 
						
							| 139 | 138 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  +  1 )  −  1 )  =  ( 𝐾  −  1 ) ) | 
						
							| 140 | 122 139 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ♯ ‘ ( 𝑣  ∖  { 𝑧 } ) )  =  ( 𝐾  −  1 ) ) | 
						
							| 141 | 106 115 140 | elrabd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑣  ∖  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) | 
						
							| 142 | 141 | ex | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) )  →  ( 𝑣  ∖  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) ) | 
						
							| 143 | 105 142 | biimtrid | ⊢ ( 𝜑  →  ( 𝑣  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  →  ( 𝑣  ∖  { 𝑧 } )  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } ) ) | 
						
							| 144 | 61 105 | anbi12i | ⊢ ( ( 𝑢  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∧  𝑣  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  ↔  ( ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) ) ) | 
						
							| 145 |  | simp3rl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  𝑧  ∈  𝑣 ) | 
						
							| 146 | 145 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  { 𝑧 }  ⊆  𝑣 ) | 
						
							| 147 |  | incom | ⊢ ( { 𝑧 }  ∩  𝑢 )  =  ( 𝑢  ∩  { 𝑧 } ) | 
						
							| 148 | 80 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑢  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 149 | 147 148 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( { 𝑧 }  ∩  𝑢 )  =  ∅ ) | 
						
							| 150 |  | uneqdifeq | ⊢ ( ( { 𝑧 }  ⊆  𝑣  ∧  ( { 𝑧 }  ∩  𝑢 )  =  ∅ )  →  ( ( { 𝑧 }  ∪  𝑢 )  =  𝑣  ↔  ( 𝑣  ∖  { 𝑧 } )  =  𝑢 ) ) | 
						
							| 151 | 146 149 150 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( { 𝑧 }  ∪  𝑢 )  =  𝑣  ↔  ( 𝑣  ∖  { 𝑧 } )  =  𝑢 ) ) | 
						
							| 152 | 151 | bicomd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( ( 𝑣  ∖  { 𝑧 } )  =  𝑢  ↔  ( { 𝑧 }  ∪  𝑢 )  =  𝑣 ) ) | 
						
							| 153 |  | eqcom | ⊢ ( 𝑢  =  ( 𝑣  ∖  { 𝑧 } )  ↔  ( 𝑣  ∖  { 𝑧 } )  =  𝑢 ) | 
						
							| 154 |  | eqcom | ⊢ ( 𝑣  =  ( 𝑢  ∪  { 𝑧 } )  ↔  ( 𝑢  ∪  { 𝑧 } )  =  𝑣 ) | 
						
							| 155 |  | uncom | ⊢ ( 𝑢  ∪  { 𝑧 } )  =  ( { 𝑧 }  ∪  𝑢 ) | 
						
							| 156 | 155 | eqeq1i | ⊢ ( ( 𝑢  ∪  { 𝑧 } )  =  𝑣  ↔  ( { 𝑧 }  ∪  𝑢 )  =  𝑣 ) | 
						
							| 157 | 154 156 | bitri | ⊢ ( 𝑣  =  ( 𝑢  ∪  { 𝑧 } )  ↔  ( { 𝑧 }  ∪  𝑢 )  =  𝑣 ) | 
						
							| 158 | 152 153 157 | 3bitr4g | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑢  =  ( 𝑣  ∖  { 𝑧 } )  ↔  𝑣  =  ( 𝑢  ∪  { 𝑧 } ) ) ) | 
						
							| 159 | 158 | 3expib | ⊢ ( 𝜑  →  ( ( ( 𝑢  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝐾  −  1 ) )  ∧  ( 𝑣  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝑧  ∈  𝑣  ∧  ( ♯ ‘ 𝑣 )  =  𝐾 ) ) )  →  ( 𝑢  =  ( 𝑣  ∖  { 𝑧 } )  ↔  𝑣  =  ( 𝑢  ∪  { 𝑧 } ) ) ) ) | 
						
							| 160 | 144 159 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∧  𝑣  ∈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  →  ( 𝑢  =  ( 𝑣  ∖  { 𝑧 } )  ↔  𝑣  =  ( 𝑢  ∪  { 𝑧 } ) ) ) ) | 
						
							| 161 | 51 59 101 143 160 | en3d | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ≈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) | 
						
							| 162 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ⊆  𝒫  𝐴 | 
						
							| 163 |  | ssfi | ⊢ ( ( 𝒫  𝐴  ∈  Fin  ∧  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ⊆  𝒫  𝐴 )  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∈  Fin ) | 
						
							| 164 | 49 162 163 | sylancl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∈  Fin ) | 
						
							| 165 |  | hashen | ⊢ ( ( { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ∈  Fin  ∧  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin )  →  ( ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  ↔  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ≈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 166 | 164 59 165 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  ↔  { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) }  ≈  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 167 | 161 166 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑥 )  =  ( 𝐾  −  1 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 168 | 47 167 | eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 169 | 39 168 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐴 ) C 𝐾 )  +  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) ) )  =  ( ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  +  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) ) | 
						
							| 170 | 52 | a1i | ⊢ ( 𝜑  →  { 𝑧 }  ∈  Fin ) | 
						
							| 171 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝐴 ) | 
						
							| 172 | 2 171 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 173 |  | hashun | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑧 }  ∈  Fin  ∧  ( 𝐴  ∩  { 𝑧 } )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 174 | 1 170 172 173 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑧 } ) ) ) | 
						
							| 175 | 85 | oveq2i | ⊢ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑧 } ) )  =  ( ( ♯ ‘ 𝐴 )  +  1 ) | 
						
							| 176 | 174 175 | eqtrdi | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝐴 )  +  1 ) ) | 
						
							| 177 | 176 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) ) C 𝐾 )  =  ( ( ( ♯ ‘ 𝐴 )  +  1 ) C 𝐾 ) ) | 
						
							| 178 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 179 | 1 178 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 180 |  | bcpasc | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝐴 ) C 𝐾 )  +  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) ) )  =  ( ( ( ♯ ‘ 𝐴 )  +  1 ) C 𝐾 ) ) | 
						
							| 181 | 179 4 180 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐴 ) C 𝐾 )  +  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) ) )  =  ( ( ( ♯ ‘ 𝐴 )  +  1 ) C 𝐾 ) ) | 
						
							| 182 | 177 181 | eqtr4d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) ) C 𝐾 )  =  ( ( ( ♯ ‘ 𝐴 ) C 𝐾 )  +  ( ( ♯ ‘ 𝐴 ) C ( 𝐾  −  1 ) ) ) ) | 
						
							| 183 |  | pm2.1 | ⊢ ( ¬  𝑧  ∈  𝑥  ∨  𝑧  ∈  𝑥 ) | 
						
							| 184 | 183 | biantrur | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝐾  ↔  ( ( ¬  𝑧  ∈  𝑥  ∨  𝑧  ∈  𝑥 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 185 |  | andir | ⊢ ( ( ( ¬  𝑧  ∈  𝑥  ∨  𝑧  ∈  𝑥 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ↔  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∨  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) | 
						
							| 186 | 184 185 | bitri | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝐾  ↔  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∨  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) | 
						
							| 187 | 186 | rabbii | ⊢ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 }  =  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∨  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) } | 
						
							| 188 |  | unrab | ⊢ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∪  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  =  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∨  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) } | 
						
							| 189 | 187 188 | eqtr4i | ⊢ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 }  =  ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∪  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) | 
						
							| 190 | 189 | fveq2i | ⊢ ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } )  =  ( ♯ ‘ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∪  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) | 
						
							| 191 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ⊆  𝒫  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 192 |  | ssfi | ⊢ ( ( 𝒫  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin  ∧  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ⊆  𝒫  ( 𝐴  ∪  { 𝑧 } ) )  →  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin ) | 
						
							| 193 | 56 191 192 | sylancl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin ) | 
						
							| 194 |  | inrab | ⊢ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∩  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  =  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) } | 
						
							| 195 |  | simprl | ⊢ ( ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 196 |  | simpll | ⊢ ( ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 197 | 195 196 | pm2.65i | ⊢ ¬  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 198 | 197 | rgenw | ⊢ ∀ 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } ) ¬  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 199 |  | rabeq0 | ⊢ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) }  =  ∅  ↔  ∀ 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } ) ¬  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) ) | 
						
							| 200 | 198 199 | mpbir | ⊢ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 )  ∧  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) ) }  =  ∅ | 
						
							| 201 | 194 200 | eqtri | ⊢ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∩  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  =  ∅ | 
						
							| 202 | 201 | a1i | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∩  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  =  ∅ ) | 
						
							| 203 |  | hashun | ⊢ ( ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin  ∧  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∈  Fin  ∧  ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∩  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  =  ∅ )  →  ( ♯ ‘ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∪  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  +  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) ) | 
						
							| 204 | 193 59 202 203 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) }  ∪  { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  +  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) ) | 
						
							| 205 | 190 204 | eqtrid | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } )  =  ( ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ¬  𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } )  +  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( 𝑧  ∈  𝑥  ∧  ( ♯ ‘ 𝑥 )  =  𝐾 ) } ) ) ) | 
						
							| 206 | 169 182 205 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐴  ∪  { 𝑧 } ) ) C 𝐾 )  =  ( ♯ ‘ { 𝑥  ∈  𝒫  ( 𝐴  ∪  { 𝑧 } )  ∣  ( ♯ ‘ 𝑥 )  =  𝐾 } ) ) |