Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ⊆ 𝐴 ) |
3 |
2
|
sspwd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 ) |
4 |
|
rabss2 |
⊢ ( 𝒫 𝐵 ⊆ 𝒫 𝐴 → { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
6 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ 𝑉 ) |
7 |
6 2
|
ssexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ V ) |
8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
9 |
1
|
hashbcval |
⊢ ( ( 𝐵 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
11 |
1
|
hashbcval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
13 |
5 10 12
|
3sstr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) ⊆ ( 𝐴 𝐶 𝑁 ) ) |