Metamath Proof Explorer


Theorem hashbcss

Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion hashbcss ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) ⊆ ( 𝐴 𝐶 𝑁 ) )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 simp2 ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → 𝐵𝐴 )
3 2 sspwd ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 )
4 rabss2 ( 𝒫 𝐵 ⊆ 𝒫 𝐴 → { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
5 3 4 syl ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
6 simp1 ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → 𝐴𝑉 )
7 6 2 ssexd ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → 𝐵 ∈ V )
8 simp3 ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 )
9 1 hashbcval ( ( 𝐵 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
10 7 8 9 syl2anc ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
11 1 hashbcval ( ( 𝐴𝑉𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
12 11 3adant2 ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
13 5 10 12 3sstr4d ( ( 𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0 ) → ( 𝐵 𝐶 𝑁 ) ⊆ ( 𝐴 𝐶 𝑁 ) )