Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
3 |
|
pwexg |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → 𝒫 𝐴 ∈ V ) |
5 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V ) |
7 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) = 𝑖 ↔ ( ♯ ‘ 𝑥 ) = 𝑖 ) ) |
8 |
7
|
cbvrabv |
⊢ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑥 ) = 𝑖 } |
9 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → 𝑎 = 𝐴 ) |
10 |
9
|
pweqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → 𝒫 𝑎 = 𝒫 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → 𝑖 = 𝑁 ) |
12 |
11
|
eqeq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → ( ( ♯ ‘ 𝑥 ) = 𝑖 ↔ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) |
13 |
10 12
|
rabeqbidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → { 𝑥 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑥 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
14 |
8 13
|
eqtrid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑖 = 𝑁 ) → { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
15 |
14 1
|
ovmpoga |
⊢ ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
16 |
6 15
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |
17 |
2 16
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ) |