| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							ltpnf | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  <  +∞ )  | 
						
						
							| 3 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							pnfxr | 
							⊢ +∞  ∈  ℝ*  | 
						
						
							| 5 | 
							
								
							 | 
							xrltnle | 
							⊢ ( ( 𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 𝐵  <  +∞  ↔  ¬  +∞  ≤  𝐵 ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							sylancl | 
							⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  <  +∞  ↔  ¬  +∞  ≤  𝐵 ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							mpbid | 
							⊢ ( 𝐵  ∈  ℝ  →  ¬  +∞  ≤  𝐵 )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							⊢ ( 𝐵  ∈  ℕ0  →  ¬  +∞  ≤  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							hashinf | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  =  +∞ )  | 
						
						
							| 10 | 
							
								9
							 | 
							breq1d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ( ♯ ‘ 𝐴 )  ≤  𝐵  ↔  +∞  ≤  𝐵 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							notbid | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ¬  ( ♯ ‘ 𝐴 )  ≤  𝐵  ↔  ¬  +∞  ≤  𝐵 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							syl5ibrcom | 
							⊢ ( 𝐵  ∈  ℕ0  →  ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ¬  ( ♯ ‘ 𝐴 )  ≤  𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							expdimp | 
							⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐴  ∈  𝑉 )  →  ( ¬  𝐴  ∈  Fin  →  ¬  ( ♯ ‘ 𝐴 )  ≤  𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  ℕ0 )  →  ( ¬  𝐴  ∈  Fin  →  ¬  ( ♯ ‘ 𝐴 )  ≤  𝐵 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							con4d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝐴 )  ≤  𝐵  →  𝐴  ∈  Fin ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3impia | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ≤  𝐵 )  →  𝐴  ∈  Fin )  |