Step |
Hyp |
Ref |
Expression |
1 |
|
cardidm |
⊢ ( card ‘ ( card ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) |
2 |
1
|
fveq2i |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) |
3 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
4 |
|
ssid |
⊢ ( card ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) |
5 |
|
ssnnfi |
⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) → ( card ‘ 𝐴 ) ∈ Fin ) |
6 |
3 4 5
|
sylancl |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ Fin ) |
7 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
8 |
7
|
hashgval |
⊢ ( ( card ‘ 𝐴 ) ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ♯ ‘ ( card ‘ 𝐴 ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ♯ ‘ ( card ‘ 𝐴 ) ) ) |
10 |
7
|
hashgval |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
11 |
2 9 10
|
3eqtr3a |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |