Metamath Proof Explorer


Theorem hashcl

Description: Closure of the # function. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 13-Jul-2014)

Ref Expression
Assertion hashcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 eqid ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω )
2 1 hashgval ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) )
3 ficardom ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω )
4 1 hashgf1o ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0
5 f1of ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0 )
6 4 5 ax-mp ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0
7 6 ffvelrni ( ( card ‘ 𝐴 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 )
8 3 7 syl ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 )
9 2 8 eqeltrrd ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )