Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
2 |
1
|
hashgval |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
3 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
4 |
1
|
hashgf1o |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 |
5 |
|
f1of |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0 ) |
6 |
4 5
|
ax-mp |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0 |
7 |
6
|
ffvelrni |
⊢ ( ( card ‘ 𝐴 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 ) |
8 |
3 7
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 ) |
9 |
2 8
|
eqeltrrd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |