| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 2 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
| 4 |
3
|
neli |
⊢ ¬ +∞ ∈ ℝ |
| 5 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 6 |
5
|
eleq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 7 |
4 6
|
mtbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) ) |
| 9 |
8
|
con4d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℝ → 𝐴 ∈ Fin ) ) |
| 10 |
2 9
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐴 ∈ Fin ) ) |
| 11 |
1 10
|
impbid2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |