| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi | ⊢ ( 𝐵  ∈  𝐴  →  { 𝐵 }  ⊆  𝐴 ) | 
						
							| 2 |  | hashssdif | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝐵 }  ⊆  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 4 |  | hashsng | ⊢ ( 𝐵  ∈  𝐴  →  ( ♯ ‘ { 𝐵 } )  =  1 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  𝐴 )  →  ( ♯ ‘ { 𝐵 } )  =  1 ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  𝐴 )  →  ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) | 
						
							| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  −  1 ) ) |