Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn0 |
⊢ ( 𝑌 ∈ ℕ0 → ( 𝑌 + 1 ) ∈ ℕ0 ) |
2 |
|
eleq1a |
⊢ ( ( 𝑌 + 1 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
4 |
3
|
imp |
⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
5 |
|
hashclb |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ∈ Fin ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( 𝑉 ∈ Fin ↔ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ) |
7 |
4 6
|
mpbird |
⊢ ( ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → 𝑉 ∈ Fin ) |
8 |
7
|
ex |
⊢ ( ( ( 𝑌 + 1 ) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
9 |
8
|
ex |
⊢ ( ( 𝑌 + 1 ) ∈ ℕ0 → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) ) |
10 |
1 9
|
syl |
⊢ ( 𝑌 ∈ ℕ0 → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) ) |
11 |
10
|
impcom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → 𝑉 ∈ Fin ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → 𝑉 ∈ Fin ) |
14 |
|
snssi |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑁 } ⊆ 𝑉 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → { 𝑁 } ⊆ 𝑉 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → { 𝑁 } ⊆ 𝑉 ) |
17 |
|
hashssdif |
⊢ ( ( 𝑉 ∈ Fin ∧ { 𝑁 } ⊆ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
18 |
13 16 17
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
19 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
20 |
|
hashsng |
⊢ ( 𝑁 ∈ 𝑉 → ( ♯ ‘ { 𝑁 } ) = 1 ) |
21 |
20
|
oveq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − 1 ) ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( 𝑌 + 1 ) − 1 ) ) |
23 |
|
nn0cn |
⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ ) |
24 |
|
1cnd |
⊢ ( 𝑌 ∈ ℕ0 → 1 ∈ ℂ ) |
25 |
23 24
|
pncand |
⊢ ( 𝑌 ∈ ℕ0 → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
27 |
22 26
|
eqtrd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑌 + 1 ) − ( ♯ ‘ { 𝑁 } ) ) = 𝑌 ) |
28 |
19 27
|
sylan9eqr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) = 𝑌 ) |
29 |
18 28
|
eqtrd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = 𝑌 ) |
30 |
29
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) = ( 𝑌 + 1 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = 𝑌 ) ) |