Metamath Proof Explorer


Theorem hashdomi

Description: Non-strict order relation of the # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion hashdomi ( 𝐴𝐵 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴𝐵𝐴 ∈ Fin ) → 𝐴𝐵 )
2 simpr ( ( 𝐴𝐵𝐴 ∈ Fin ) → 𝐴 ∈ Fin )
3 reldom Rel ≼
4 3 brrelex2i ( 𝐴𝐵𝐵 ∈ V )
5 4 adantr ( ( 𝐴𝐵𝐴 ∈ Fin ) → 𝐵 ∈ V )
6 hashdom ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ V ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
7 2 5 6 syl2anc ( ( 𝐴𝐵𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
8 1 7 mpbird ( ( 𝐴𝐵𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )
9 pnfxr +∞ ∈ ℝ*
10 pnfge ( +∞ ∈ ℝ* → +∞ ≤ +∞ )
11 9 10 mp1i ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → +∞ ≤ +∞ )
12 3 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
13 hashinf ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ )
14 12 13 sylan ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ )
15 4 adantr ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → 𝐵 ∈ V )
16 domfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵 ) → 𝐴 ∈ Fin )
17 16 stoic1b ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐵 ∈ Fin )
18 hashinf ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ )
19 15 17 18 syl2anc ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ )
20 11 14 19 3brtr4d ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )
21 8 20 pm2.61dan ( 𝐴𝐵 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )