Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝐵 ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
6 |
|
hashdom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ V ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
8 |
1 7
|
mpbird |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
10 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
11 |
9 10
|
mp1i |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → +∞ ≤ +∞ ) |
12 |
3
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
13 |
|
hashinf |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
15 |
4
|
adantr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
16 |
|
domfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ Fin ) |
17 |
16
|
stoic1b |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐵 ∈ Fin ) |
18 |
|
hashinf |
⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
20 |
11 14 19
|
3brtr4d |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
21 |
8 20
|
pm2.61dan |
⊢ ( 𝐴 ≼ 𝐵 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |