Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) |
2 |
|
erclwwlkn.r |
⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } |
3 |
1 2
|
eclclwwlkn1 |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑈 ∈ ( 𝑊 / ∼ ) ↔ ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
4 |
|
rabeq |
⊢ ( 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
5 |
1 4
|
mp1i |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
6 |
|
prmnn |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) |
7 |
6
|
nnnn0d |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ0 ) |
8 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
9 |
8
|
biimpi |
⊢ ( 𝑥 ∈ 𝑊 → 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
10 |
|
clwwlknscsh |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
11 |
7 9 10
|
syl2an |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
12 |
5 11
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
13 |
12
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
15 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
16 |
|
eqeq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑁 = 0 ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
17 |
16
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 → ( 𝑁 = 0 ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
18 |
|
hasheq0 |
⊢ ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) ) |
19 |
17 18
|
sylan9bbr |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 = 0 ↔ 𝑥 = ∅ ) ) |
20 |
19
|
necon3bid |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 ≠ 0 ↔ 𝑥 ≠ ∅ ) ) |
21 |
20
|
biimpcd |
⊢ ( 𝑁 ≠ 0 → ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑥 ≠ ∅ ) ) |
22 |
15 21
|
simplbiim |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑥 ≠ ∅ ) ) |
23 |
22
|
impcom |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑥 ≠ ∅ ) |
24 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ 𝑥 ) = 𝑁 ) |
25 |
24
|
eqcomd |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
26 |
14 23 25
|
3jca |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) |
27 |
26
|
ex |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
28 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
29 |
28
|
clwwlknbp |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) |
30 |
27 29
|
syl11 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
31 |
8 30
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝑊 → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
32 |
6 31
|
syl |
⊢ ( 𝑁 ∈ ℙ → ( 𝑥 ∈ 𝑊 → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
33 |
32
|
imp |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) |
34 |
|
scshwfzeqfzo |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
36 |
35
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
37 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 cyclShift 𝑛 ) = ( 𝑥 cyclShift 𝑚 ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
39 |
38
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
40 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ 𝑢 = ( 𝑥 cyclShift 𝑚 ) ) ) |
41 |
|
eqcom |
⊢ ( 𝑢 = ( 𝑥 cyclShift 𝑚 ) ↔ ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) |
42 |
40 41
|
bitrdi |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
43 |
42
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
44 |
39 43
|
syl5bb |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
45 |
44
|
cbvrabv |
⊢ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 } |
46 |
45
|
cshwshash |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ∨ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ) ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ∧ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) → ( ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ∨ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ) ) |
48 |
47
|
orcomd |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ∧ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) → ( ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ∨ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) |
49 |
|
fveqeq2 |
⊢ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ↔ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ) ) |
50 |
|
fveqeq2 |
⊢ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) |
51 |
49 50
|
orbi12d |
⊢ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ↔ ( ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ∨ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ∧ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) → ( ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ↔ ( ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = 1 ∨ ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) ) |
53 |
48 52
|
mpbird |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ∧ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) |
54 |
53
|
ex |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) |
55 |
54
|
ex |
⊢ ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
57 |
|
eleq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑁 ∈ ℙ ↔ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) |
58 |
|
oveq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
59 |
58
|
rexeqdv |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) |
60 |
59
|
rabbidv |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
62 |
|
eqeq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( ♯ ‘ 𝑈 ) = 𝑁 ↔ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) |
63 |
62
|
orbi2d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ↔ ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) |
64 |
61 63
|
imbi12d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ↔ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
65 |
57 64
|
imbi12d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
66 |
65
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 → ( ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
68 |
56 67
|
mpbird |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ) |
69 |
29 68
|
syl |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ) |
70 |
69 1
|
eleq2s |
⊢ ( 𝑥 ∈ 𝑊 → ( 𝑁 ∈ ℙ → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ) |
71 |
70
|
impcom |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
72 |
36 71
|
sylbid |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
73 |
13 72
|
sylbid |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
74 |
73
|
rexlimdva |
⊢ ( 𝑁 ∈ ℙ → ( ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
75 |
74
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( 𝑁 ∈ ℙ → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
76 |
3 75
|
syl6bi |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑁 ∈ ℙ → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ) |
77 |
76
|
pm2.43i |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑁 ∈ ℙ → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
78 |
77
|
impcom |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑈 ∈ ( 𝑊 / ∼ ) ) → ( ( ♯ ‘ 𝑈 ) = 1 ∨ ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |