Metamath Proof Explorer


Theorem hashelne0d

Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashelne0d.1 ( 𝜑𝐵𝐴 )
hashelne0d.2 ( 𝜑𝐴𝑉 )
Assertion hashelne0d ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 hashelne0d.1 ( 𝜑𝐵𝐴 )
2 hashelne0d.2 ( 𝜑𝐴𝑉 )
3 1 ne0d ( 𝜑𝐴 ≠ ∅ )
4 3 neneqd ( 𝜑 → ¬ 𝐴 = ∅ )
5 hasheq0 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
6 2 5 syl ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
7 4 6 mtbird ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 )