Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashelne0d.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| hashelne0d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | hashelne0d | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashelne0d.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 2 | hashelne0d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | 1 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | 
| 4 | 3 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) | 
| 5 | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | 
| 7 | 4 6 | mtbird | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |