Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hashelne0d.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
hashelne0d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
Assertion | hashelne0d | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashelne0d.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
2 | hashelne0d.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
3 | 1 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 | 3 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
5 | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
6 | 2 5 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
7 | 4 6 | mtbird | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |