Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
3 |
1 2
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
4 |
3
|
eqcomi |
⊢ 1 = ( ♯ ‘ { ∅ } ) |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 1 = ( ♯ ‘ { ∅ } ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
3 8
|
eqeltri |
⊢ ( ♯ ‘ { ∅ } ) ∈ ℕ0 |
10 |
|
hashvnfin |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ { ∅ } ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ∈ Fin ) |
13 |
|
snfi |
⊢ { ∅ } ∈ Fin |
14 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ { ∅ } ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) |
15 |
12 13 14
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) |
16 |
7 15
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ≈ { ∅ } ) |
17 |
16
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ≈ { ∅ } ) ) |
18 |
|
hasheni |
⊢ ( 𝐴 ≈ { ∅ } → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) |
19 |
17 18
|
impbid1 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) ) |
20 |
|
df1o2 |
⊢ 1o = { ∅ } |
21 |
20
|
eqcomi |
⊢ { ∅ } = 1o |
22 |
21
|
breq2i |
⊢ ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o ) |
23 |
22
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o ) ) |
24 |
6 19 23
|
3bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) ) |