Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ≈ 𝐵 ) |
2 |
|
enfii |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
4 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
5 |
3 4
|
sylancom |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
6 |
1 5
|
mpbird |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
7 |
|
relen |
⊢ Rel ≈ |
8 |
7
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
9 |
|
enfi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
10 |
9
|
notbid |
⊢ ( 𝐴 ≈ 𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin ) ) |
11 |
10
|
biimpar |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) |
12 |
|
hashinf |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
13 |
8 11 12
|
syl2an2r |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
14 |
7
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
15 |
|
hashinf |
⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
17 |
13 16
|
eqtr4d |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
18 |
6 17
|
pm2.61dan |
⊢ ( 𝐴 ≈ 𝐵 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |