| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
| 2 |
1
|
neli |
⊢ ¬ +∞ ∈ ℝ |
| 3 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 4 |
3
|
eleq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 5 |
2 4
|
mtbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
|
id |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( ♯ ‘ 𝐴 ) = 0 ) |
| 7 |
|
0re |
⊢ 0 ∈ ℝ |
| 8 |
6 7
|
eqeltrdi |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
5 8
|
nsyl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |
| 10 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
| 11 |
|
0fi |
⊢ ∅ ∈ Fin |
| 12 |
10 11
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 13 |
12
|
con3i |
⊢ ( ¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 = ∅ ) |
| 15 |
9 14
|
2falsed |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 16 |
15
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) ) |
| 17 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ ∅ ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ 𝐴 ≈ ∅ ) ) |
| 18 |
11 17
|
mpan2 |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ 𝐴 ≈ ∅ ) ) |
| 19 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 20 |
19
|
fveq2i |
⊢ ( ♯ ‘ ( 1 ... 0 ) ) = ( ♯ ‘ ∅ ) |
| 21 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 22 |
|
hashfz1 |
⊢ ( 0 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 0 ) ) = 0 ) |
| 23 |
21 22
|
ax-mp |
⊢ ( ♯ ‘ ( 1 ... 0 ) ) = 0 |
| 24 |
20 23
|
eqtr3i |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 25 |
24
|
eqeq2i |
⊢ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ ( ♯ ‘ 𝐴 ) = 0 ) |
| 26 |
|
en0 |
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
| 27 |
18 25 26
|
3bitr3g |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 28 |
16 27
|
pm2.61d2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |