Metamath Proof Explorer


Theorem hasheqf1o

Description: The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion hasheqf1o ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 hashen ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
2 bren ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 )
3 1 2 bitrdi ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )