Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hasheqf1od.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| hasheqf1od.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | ||
| Assertion | hasheqf1od | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheqf1od.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 2 | hasheqf1od.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 | 4 1 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 6 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 7 | 5 2 6 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 8 | hasheqf1oi | ⊢ ( 𝐴 ∈ 𝑈 → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) ) | |
| 9 | 1 7 8 | sylc | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |