Metamath Proof Explorer


Theorem hasheqf1od

Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)

Ref Expression
Hypotheses hasheqf1od.a ( 𝜑𝐴𝑈 )
hasheqf1od.f ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
Assertion hasheqf1od ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 hasheqf1od.a ( 𝜑𝐴𝑈 )
2 hasheqf1od.f ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
3 f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )
4 2 3 syl ( 𝜑𝐹 : 𝐴𝐵 )
5 4 1 fexd ( 𝜑𝐹 ∈ V )
6 f1oeq1 ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1-onto𝐵 ) )
7 5 2 6 spcedv ( 𝜑 → ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 )
8 hasheqf1oi ( 𝐴𝑈 → ( ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) )
9 1 7 8 sylc ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )