| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1eq2 |
⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ∅ –1-1→ 𝐵 ) ) |
| 2 |
|
f1fn |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 Fn ∅ ) |
| 3 |
|
fn0 |
⊢ ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 = ∅ ) |
| 5 |
|
f10 |
⊢ ∅ : ∅ –1-1→ 𝐵 |
| 6 |
|
f1eq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1→ 𝐵 ↔ ∅ : ∅ –1-1→ 𝐵 ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝑓 = ∅ → 𝑓 : ∅ –1-1→ 𝐵 ) |
| 8 |
4 7
|
impbii |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 = ∅ ) |
| 9 |
|
velsn |
⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) |
| 10 |
8 9
|
bitr4i |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) |
| 11 |
1 10
|
bitrdi |
⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) ) |
| 12 |
11
|
eqabcdv |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { ∅ } ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { ∅ } ) ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
| 17 |
13 16
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = 1 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 19 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ 0 ) ) |
| 22 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 23 |
21 22
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = 1 ) |
| 24 |
20
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C 0 ) ) |
| 25 |
23 24
|
oveq12d |
⊢ ( 𝑥 = ∅ → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
| 26 |
17 25
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) ) |
| 28 |
|
f1eq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝑦 –1-1→ 𝐵 ) ) |
| 29 |
28
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) |
| 31 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) |
| 34 |
31 33
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) |
| 35 |
30 34
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 36 |
35
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 37 |
|
f1eq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 38 |
37
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
| 40 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 43 |
40 42
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 44 |
39 43
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 45 |
44
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 46 |
|
f1eq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 47 |
46
|
abbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 49 |
|
2fveq3 |
⊢ ( 𝑥 = 𝐴 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) |
| 52 |
49 51
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| 53 |
48 52
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 54 |
53
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
| 55 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 56 |
|
bcn0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) |
| 57 |
55 56
|
syl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝐵 ∈ Fin → ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) = ( 1 · 1 ) ) |
| 59 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 60 |
58 59
|
eqtr2di |
⊢ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
| 61 |
|
abn0 |
⊢ ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ ↔ ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 62 |
|
f1domg |
⊢ ( 𝐵 ∈ Fin → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 64 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 65 |
64
|
elv |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 67 |
66
|
breq1d |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 68 |
|
simprl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 69 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 70 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 71 |
68 69 70
|
sylancl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 72 |
|
simpl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐵 ∈ Fin ) |
| 73 |
|
hashdom |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 74 |
71 72 73
|
syl2anc |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 75 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 76 |
75
|
ad2antrl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 77 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 78 |
76 77
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 79 |
78
|
nnred |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 80 |
55
|
adantr |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 81 |
80
|
nn0red |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 82 |
79 81
|
lenltd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 83 |
67 74 82
|
3bitr3d |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 84 |
63 83
|
sylibd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 85 |
84
|
exlimdv |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 86 |
61 85
|
biimtrid |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 87 |
86
|
necon4ad |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) ) |
| 88 |
87
|
imp |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) |
| 89 |
88
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ♯ ‘ ∅ ) ) |
| 90 |
|
hashcl |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 91 |
71 90
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 92 |
91
|
faccld |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℕ ) |
| 93 |
92
|
nncnd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
| 95 |
94
|
mul01d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) = 0 ) |
| 96 |
19 89 95
|
3eqtr4a |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
| 97 |
66
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 98 |
97
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 99 |
80
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 100 |
78
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 101 |
100
|
nnzd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ) |
| 102 |
|
animorr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 103 |
|
bcval4 |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) |
| 104 |
99 101 102 103
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) |
| 105 |
98 104
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
| 106 |
105
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
| 107 |
96 106
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 108 |
107
|
a1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 109 |
|
oveq2 |
⊢ ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 110 |
68
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝑦 ∈ Fin ) |
| 111 |
72
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 112 |
|
simplrr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 113 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 114 |
110 111 112 113
|
hashf1lem2 |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) ) |
| 115 |
80
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 116 |
115
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℕ ) |
| 117 |
116
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℂ ) |
| 118 |
76
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 119 |
|
peano2nn0 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) |
| 120 |
118 119
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) |
| 121 |
|
nn0sub2 |
⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) |
| 122 |
120 115 113 121
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) |
| 123 |
122
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℕ ) |
| 124 |
123
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℂ ) |
| 125 |
123
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ≠ 0 ) |
| 126 |
117 124 125
|
divcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ∈ ℂ ) |
| 127 |
120
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ ) |
| 128 |
127
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℂ ) |
| 129 |
127
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ≠ 0 ) |
| 130 |
126 128 129
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 131 |
115
|
nn0cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 132 |
118
|
nn0cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
| 133 |
131 132
|
subcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
| 134 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 135 |
|
npcan |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) |
| 136 |
133 134 135
|
sylancl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) |
| 137 |
|
1cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 1 ∈ ℂ ) |
| 138 |
131 132 137
|
subsub4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 139 |
138 122
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 ) |
| 140 |
|
nn0p1nn |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) |
| 141 |
139 140
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) |
| 142 |
136 141
|
eqeltrrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
| 143 |
142
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
| 144 |
126 133 143
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 145 |
130 144
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 146 |
66
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 147 |
146
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 148 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 149 |
120 148
|
eleqtrdi |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 150 |
115
|
nn0zd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 151 |
|
elfz5 |
⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 152 |
149 150 151
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 153 |
113 152
|
mpbird |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 154 |
|
bcval2 |
⊢ ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 155 |
153 154
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 156 |
146
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 157 |
117 124 128 125 129
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 158 |
155 156 157
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 159 |
147 158
|
oveq12d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 160 |
118 148
|
eleqtrdi |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 161 |
|
peano2fzr |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 162 |
160 153 161
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 163 |
|
bcval2 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 164 |
162 163
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 165 |
|
elfzle2 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 166 |
162 165
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 167 |
|
nn0sub2 |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 168 |
118 115 166 167
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 169 |
168
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℕ ) |
| 170 |
169
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 171 |
118
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
| 172 |
171
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
| 173 |
169
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ≠ 0 ) |
| 174 |
171
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
| 175 |
117 170 172 173 174
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 176 |
164 175
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) |
| 177 |
176
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 178 |
|
facnn2 |
⊢ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 179 |
142 178
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 180 |
138
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) = ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 181 |
180
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 182 |
179 181
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 183 |
182
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 184 |
117 170 173
|
divcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ∈ ℂ ) |
| 185 |
184 172 174
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 186 |
117 124 133 125 143
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 187 |
183 185 186
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 188 |
177 187
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 189 |
188
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 190 |
145 159 189
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 191 |
114 190
|
eqeq12d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 192 |
109 191
|
imbitrrid |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 193 |
108 192 81 79
|
ltlecasei |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 194 |
193
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐵 ∈ Fin → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 195 |
194
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 196 |
27 36 45 54 60 195
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 197 |
196
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |