Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq2 |
⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ∅ –1-1→ 𝐵 ) ) |
2 |
|
f1fn |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 Fn ∅ ) |
3 |
|
fn0 |
⊢ ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ ) |
4 |
2 3
|
sylib |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 = ∅ ) |
5 |
|
f10 |
⊢ ∅ : ∅ –1-1→ 𝐵 |
6 |
|
f1eq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1→ 𝐵 ↔ ∅ : ∅ –1-1→ 𝐵 ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝑓 = ∅ → 𝑓 : ∅ –1-1→ 𝐵 ) |
8 |
4 7
|
impbii |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 = ∅ ) |
9 |
|
velsn |
⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) |
10 |
8 9
|
bitr4i |
⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) |
11 |
1 10
|
bitrdi |
⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) ) |
12 |
11
|
abbi1dv |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { ∅ } ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { ∅ } ) ) |
14 |
|
0ex |
⊢ ∅ ∈ V |
15 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
16 |
14 15
|
ax-mp |
⊢ ( ♯ ‘ { ∅ } ) = 1 |
17 |
13 16
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = 1 ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
19 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ 0 ) ) |
22 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
23 |
21 22
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = 1 ) |
24 |
20
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C 0 ) ) |
25 |
23 24
|
oveq12d |
⊢ ( 𝑥 = ∅ → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
26 |
17 25
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) ) |
28 |
|
f1eq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝑦 –1-1→ 𝐵 ) ) |
29 |
28
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) |
30 |
29
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) |
31 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) |
34 |
31 33
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) |
35 |
30 34
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
37 |
|
f1eq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
38 |
37
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
39 |
38
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
43 |
40 42
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
44 |
39 43
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
45 |
44
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
46 |
|
f1eq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
47 |
46
|
abbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
48 |
47
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
49 |
|
2fveq3 |
⊢ ( 𝑥 = 𝐴 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) |
52 |
49 51
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
53 |
48 52
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
54 |
53
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
55 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
56 |
|
bcn0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) |
57 |
55 56
|
syl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) |
58 |
57
|
oveq2d |
⊢ ( 𝐵 ∈ Fin → ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) = ( 1 · 1 ) ) |
59 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
60 |
58 59
|
eqtr2di |
⊢ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
61 |
|
abn0 |
⊢ ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ ↔ ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
62 |
|
f1domg |
⊢ ( 𝐵 ∈ Fin → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
64 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
65 |
64
|
elv |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
67 |
66
|
breq1d |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
68 |
|
simprl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
69 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
70 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
71 |
68 69 70
|
sylancl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
72 |
|
simpl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐵 ∈ Fin ) |
73 |
|
hashdom |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
74 |
71 72 73
|
syl2anc |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
75 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
76 |
75
|
ad2antrl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
77 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
78 |
76 77
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
79 |
78
|
nnred |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
80 |
55
|
adantr |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
81 |
80
|
nn0red |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
82 |
79 81
|
lenltd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
83 |
67 74 82
|
3bitr3d |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
84 |
63 83
|
sylibd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
85 |
84
|
exlimdv |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
86 |
61 85
|
syl5bi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
87 |
86
|
necon4ad |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) ) |
88 |
87
|
imp |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) |
89 |
88
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ♯ ‘ ∅ ) ) |
90 |
|
hashcl |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
91 |
71 90
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
92 |
91
|
faccld |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℕ ) |
93 |
92
|
nncnd |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
95 |
94
|
mul01d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) = 0 ) |
96 |
19 89 95
|
3eqtr4a |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
97 |
66
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
98 |
97
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
99 |
80
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
100 |
78
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
101 |
100
|
nnzd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ) |
102 |
|
animorr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
103 |
|
bcval4 |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) |
104 |
99 101 102 103
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) |
105 |
98 104
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
106 |
105
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
107 |
96 106
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
108 |
107
|
a1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
109 |
|
oveq2 |
⊢ ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
110 |
68
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝑦 ∈ Fin ) |
111 |
72
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
112 |
|
simplrr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
113 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
114 |
110 111 112 113
|
hashf1lem2 |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) ) |
115 |
80
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
116 |
115
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℕ ) |
117 |
116
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℂ ) |
118 |
76
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
119 |
|
peano2nn0 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) |
120 |
118 119
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) |
121 |
|
nn0sub2 |
⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) |
122 |
120 115 113 121
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) |
123 |
122
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℕ ) |
124 |
123
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℂ ) |
125 |
123
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ≠ 0 ) |
126 |
117 124 125
|
divcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ∈ ℂ ) |
127 |
120
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ ) |
128 |
127
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℂ ) |
129 |
127
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ≠ 0 ) |
130 |
126 128 129
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
131 |
115
|
nn0cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
132 |
118
|
nn0cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
133 |
131 132
|
subcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
134 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
135 |
|
npcan |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) |
136 |
133 134 135
|
sylancl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) |
137 |
|
1cnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 1 ∈ ℂ ) |
138 |
131 132 137
|
subsub4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
139 |
138 122
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 ) |
140 |
|
nn0p1nn |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) |
141 |
139 140
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) |
142 |
136 141
|
eqeltrrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
143 |
142
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
144 |
126 133 143
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
145 |
130 144
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
146 |
66
|
adantr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
147 |
146
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
148 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
149 |
120 148
|
eleqtrdi |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
150 |
115
|
nn0zd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
151 |
|
elfz5 |
⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
152 |
149 150 151
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
153 |
113 152
|
mpbird |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
154 |
|
bcval2 |
⊢ ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
155 |
153 154
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
156 |
146
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
157 |
117 124 128 125 129
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
158 |
155 156 157
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
159 |
147 158
|
oveq12d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
160 |
118 148
|
eleqtrdi |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ) |
161 |
|
peano2fzr |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
162 |
160 153 161
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
163 |
|
bcval2 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
164 |
162 163
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
165 |
|
elfzle2 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) |
166 |
162 165
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) |
167 |
|
nn0sub2 |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) |
168 |
118 115 166 167
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) |
169 |
168
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℕ ) |
170 |
169
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℂ ) |
171 |
118
|
faccld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
172 |
171
|
nncnd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
173 |
169
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ≠ 0 ) |
174 |
171
|
nnne0d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
175 |
117 170 172 173 174
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
176 |
164 175
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) |
177 |
176
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
178 |
|
facnn2 |
⊢ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
179 |
142 178
|
syl |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
180 |
138
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) = ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
181 |
180
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
182 |
179 181
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
183 |
182
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
184 |
117 170 173
|
divcld |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ∈ ℂ ) |
185 |
184 172 174
|
divcan2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
186 |
117 124 133 125 143
|
divdiv1d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
187 |
183 185 186
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
188 |
177 187
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
189 |
188
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
190 |
145 159 189
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
191 |
114 190
|
eqeq12d |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
192 |
109 191
|
syl5ibr |
⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
193 |
108 192 81 79
|
ltlecasei |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
194 |
193
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐵 ∈ Fin → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
195 |
194
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
196 |
27 36 45 54 60 195
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
197 |
196
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |