| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashf1lem2.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hashf1lem2.2 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | hashf1lem2.3 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 4 |  | hashf1lem2.4 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  +  1 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 5 |  | hashf1lem1.5 | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 6 |  | f1setex | ⊢ ( 𝐵  ∈  Fin  →  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 }  ∈  V ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 }  ∈  V ) | 
						
							| 8 |  | abanssr | ⊢ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } ) | 
						
							| 10 | 7 9 | ssexd | ⊢ ( 𝜑  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  V ) | 
						
							| 11 | 2 | difexd | ⊢ ( 𝜑  →  ( 𝐵  ∖  ran  𝐹 )  ∈  V ) | 
						
							| 12 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 13 |  | reseq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  ↾  𝐴 )  =  ( 𝑔  ↾  𝐴 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ↔  ( 𝑔  ↾  𝐴 )  =  𝐹 ) ) | 
						
							| 15 |  | f1eq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  ↔  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) | 
						
							| 16 | 14 15 | anbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 17 | 12 16 | elab | ⊢ ( 𝑔  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ↔  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) | 
						
							| 18 |  | f1f | ⊢ ( 𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  𝑔 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝑔 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 20 |  | ssun2 | ⊢ { 𝑧 }  ⊆  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 21 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 22 | 21 | snss | ⊢ ( 𝑧  ∈  ( 𝐴  ∪  { 𝑧 } )  ↔  { 𝑧 }  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 23 | 20 22 | mpbir | ⊢ 𝑧  ∈  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 24 |  | ffvelcdm | ⊢ ( ( 𝑔 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵  ∧  𝑧  ∈  ( 𝐴  ∪  { 𝑧 } ) )  →  ( 𝑔 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 25 | 19 23 24 | sylancl | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑔 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 27 |  | df-ima | ⊢ ( 𝑔  “  𝐴 )  =  ran  ( 𝑔  ↾  𝐴 ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑔  ↾  𝐴 )  =  𝐹 ) | 
						
							| 29 | 28 | rneqd | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ran  ( 𝑔  ↾  𝐴 )  =  ran  𝐹 ) | 
						
							| 30 | 27 29 | eqtrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑔  “  𝐴 )  =  ran  𝐹 ) | 
						
							| 31 | 30 | eleq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( ( 𝑔 ‘ 𝑧 )  ∈  ( 𝑔  “  𝐴 )  ↔  ( 𝑔 ‘ 𝑧 )  ∈  ran  𝐹 ) ) | 
						
							| 32 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) | 
						
							| 33 | 23 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝑧  ∈  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 34 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 36 |  | f1elima | ⊢ ( ( 𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  ∧  𝑧  ∈  ( 𝐴  ∪  { 𝑧 } )  ∧  𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) )  →  ( ( 𝑔 ‘ 𝑧 )  ∈  ( 𝑔  “  𝐴 )  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 37 | 32 33 35 36 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( ( 𝑔 ‘ 𝑧 )  ∈  ( 𝑔  “  𝐴 )  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 38 | 31 37 | bitr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( ( 𝑔 ‘ 𝑧 )  ∈  ran  𝐹  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 39 | 26 38 | mtbird | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ¬  ( 𝑔 ‘ 𝑧 )  ∈  ran  𝐹 ) | 
						
							| 40 | 25 39 | eldifd | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑔 ‘ 𝑧 )  ∈  ( 𝐵  ∖  ran  𝐹 ) ) | 
						
							| 41 | 40 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  →  ( 𝑔 ‘ 𝑧 )  ∈  ( 𝐵  ∖  ran  𝐹 ) ) ) | 
						
							| 42 | 17 41 | biimtrid | ⊢ ( 𝜑  →  ( 𝑔  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  →  ( 𝑔 ‘ 𝑧 )  ∈  ( 𝐵  ∖  ran  𝐹 ) ) ) | 
						
							| 43 |  | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 44 | 5 43 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 46 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 47 | 21 46 | f1osn | ⊢ { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } | 
						
							| 48 |  | f1of | ⊢ ( { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 }  →  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } | 
						
							| 50 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  ran  𝐹 )  →  𝑥  ∈  𝐵 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 52 | 51 | snssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  { 𝑥 }  ⊆  𝐵 ) | 
						
							| 53 |  | fss | ⊢ ( ( { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 }  ∧  { 𝑥 }  ⊆  𝐵 )  →  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) | 
						
							| 54 | 49 52 53 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) | 
						
							| 55 |  | res0 | ⊢ ( 𝐹  ↾  ∅ )  =  ∅ | 
						
							| 56 |  | res0 | ⊢ ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ∅ )  =  ∅ | 
						
							| 57 | 55 56 | eqtr4i | ⊢ ( 𝐹  ↾  ∅ )  =  ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ∅ ) | 
						
							| 58 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝐴 ) | 
						
							| 59 | 3 58 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐴  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 61 | 60 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ↾  ( 𝐴  ∩  { 𝑧 } ) )  =  ( 𝐹  ↾  ∅ ) ) | 
						
							| 62 | 60 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ( 𝐴  ∩  { 𝑧 } ) )  =  ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ∅ ) ) | 
						
							| 63 | 57 61 62 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ↾  ( 𝐴  ∩  { 𝑧 } ) )  =  ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ( 𝐴  ∩  { 𝑧 } ) ) ) | 
						
							| 64 |  | fresaunres1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } ⟶ 𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  { 𝑧 } ) )  =  ( { 〈 𝑧 ,  𝑥 〉 }  ↾  ( 𝐴  ∩  { 𝑧 } ) ) )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹 ) | 
						
							| 65 | 45 54 63 64 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹 ) | 
						
							| 66 |  | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 67 | 5 66 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 69 | 47 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) | 
						
							| 70 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  ran  𝐹 )  →  ¬  𝑥  ∈  ran  𝐹 ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ¬  𝑥  ∈  ran  𝐹 ) | 
						
							| 72 |  | disjsn | ⊢ ( ( ran  𝐹  ∩  { 𝑥 } )  =  ∅  ↔  ¬  𝑥  ∈  ran  𝐹 ) | 
						
							| 73 | 71 72 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( ran  𝐹  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 74 |  | f1oun | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ ran  𝐹  ∧  { 〈 𝑧 ,  𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } )  ∧  ( ( 𝐴  ∩  { 𝑧 } )  =  ∅  ∧  ( ran  𝐹  ∩  { 𝑥 } )  =  ∅ ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1-onto→ ( ran  𝐹  ∪  { 𝑥 } ) ) | 
						
							| 75 | 68 69 60 73 74 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1-onto→ ( ran  𝐹  ∪  { 𝑥 } ) ) | 
						
							| 76 |  | f1of1 | ⊢ ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1-onto→ ( ran  𝐹  ∪  { 𝑥 } )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ ( ran  𝐹  ∪  { 𝑥 } ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ ( ran  𝐹  ∪  { 𝑥 } ) ) | 
						
							| 78 | 45 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 79 | 78 52 | unssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( ran  𝐹  ∪  { 𝑥 } )  ⊆  𝐵 ) | 
						
							| 80 |  | f1ss | ⊢ ( ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ ( ran  𝐹  ∪  { 𝑥 } )  ∧  ( ran  𝐹  ∪  { 𝑥 } )  ⊆  𝐵 )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) | 
						
							| 81 | 77 79 80 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) | 
						
							| 82 | 44 1 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  𝐹  ∈  V ) | 
						
							| 84 |  | snex | ⊢ { 〈 𝑧 ,  𝑥 〉 }  ∈  V | 
						
							| 85 |  | unexg | ⊢ ( ( 𝐹  ∈  V  ∧  { 〈 𝑧 ,  𝑥 〉 }  ∈  V )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  V ) | 
						
							| 86 | 83 84 85 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  V ) | 
						
							| 87 |  | reseq1 | ⊢ ( 𝑓  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  →  ( 𝑓  ↾  𝐴 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 ) ) | 
						
							| 88 | 87 | eqeq1d | ⊢ ( 𝑓  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  →  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ↔  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹 ) ) | 
						
							| 89 |  | f1eq1 | ⊢ ( 𝑓  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  →  ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  ↔  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) | 
						
							| 90 | 88 89 | anbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  →  ( ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹  ∧  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 91 | 90 | elabg | ⊢ ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  V  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ↔  ( ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹  ∧  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 92 | 86 91 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ↔  ( ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↾  𝐴 )  =  𝐹  ∧  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 93 | 65 81 92 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) | 
						
							| 94 | 93 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵  ∖  ran  𝐹 )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) | 
						
							| 95 | 17 | anbi1i | ⊢ ( ( 𝑔  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  ↔  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) ) | 
						
							| 96 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) | 
						
							| 97 |  | f1fn | ⊢ ( 𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  𝑔  Fn  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  𝑔  Fn  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 99 | 75 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1-onto→ ( ran  𝐹  ∪  { 𝑥 } ) ) | 
						
							| 100 |  | f1ofn | ⊢ ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) : ( 𝐴  ∪  { 𝑧 } ) –1-1-onto→ ( ran  𝐹  ∪  { 𝑥 } )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  Fn  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 101 | 99 100 | syl | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  Fn  ( 𝐴  ∪  { 𝑧 } ) ) | 
						
							| 102 |  | eqfnfv | ⊢ ( ( 𝑔  Fn  ( 𝐴  ∪  { 𝑧 } )  ∧  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  Fn  ( 𝐴  ∪  { 𝑧 } ) )  →  ( 𝑔  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∪  { 𝑧 } ) ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 103 | 98 101 102 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( 𝑔  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∪  { 𝑧 } ) ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 104 |  | fvres | ⊢ ( 𝑦  ∈  𝐴  →  ( ( 𝑔  ↾  𝐴 ) ‘ 𝑦 )  =  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 105 | 104 | eqcomd | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝑔 ‘ 𝑦 )  =  ( ( 𝑔  ↾  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 106 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( 𝑔  ↾  𝐴 )  =  𝐹 ) | 
						
							| 107 | 106 | fveq1d | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ( 𝑔  ↾  𝐴 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 108 | 105 107 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 109 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 110 |  | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 112 | 21 46 | fnsn | ⊢ { 〈 𝑧 ,  𝑥 〉 }  Fn  { 𝑧 } | 
						
							| 113 | 112 | a1i | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  { 〈 𝑧 ,  𝑥 〉 }  Fn  { 𝑧 } ) | 
						
							| 114 | 59 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 115 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 116 | 111 113 114 115 | fvun1d | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 117 | 108 116 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) | 
						
							| 118 | 117 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) | 
						
							| 119 | 118 | biantrurd | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) ) ) | 
						
							| 120 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( 𝐴  ∪  { 𝑧 } ) ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 121 | 119 120 | bitr4di | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∪  { 𝑧 } ) ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 122 | 44 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 123 | 122 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝐹  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 124 | 3 123 | mtbird | ⊢ ( 𝜑  →  ¬  𝑧  ∈  dom  𝐹 ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ¬  𝑧  ∈  dom  𝐹 ) | 
						
							| 126 |  | fsnunfv | ⊢ ( ( 𝑧  ∈  V  ∧  𝑥  ∈  V  ∧  ¬  𝑧  ∈  dom  𝐹 )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 )  =  𝑥 ) | 
						
							| 127 | 21 46 125 126 | mp3an12i | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 )  =  𝑥 ) | 
						
							| 128 | 127 | eqeq2d | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ( 𝑔 ‘ 𝑧 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 )  ↔  ( 𝑔 ‘ 𝑧 )  =  𝑥 ) ) | 
						
							| 129 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝑔 ‘ 𝑧 ) ) | 
						
							| 130 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 ) ) | 
						
							| 131 | 129 130 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  ( 𝑔 ‘ 𝑧 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 ) ) ) | 
						
							| 132 | 21 131 | ralsn | ⊢ ( ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  ( 𝑔 ‘ 𝑧 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑧 ) ) | 
						
							| 133 |  | eqcom | ⊢ ( 𝑥  =  ( 𝑔 ‘ 𝑧 )  ↔  ( 𝑔 ‘ 𝑧 )  =  𝑥 ) | 
						
							| 134 | 128 132 133 | 3bitr4g | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( ∀ 𝑦  ∈  { 𝑧 } ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } ) ‘ 𝑦 )  ↔  𝑥  =  ( 𝑔 ‘ 𝑧 ) ) ) | 
						
							| 135 | 103 121 134 | 3bitr2d | ⊢ ( ( 𝜑  ∧  ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) ) )  →  ( 𝑔  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↔  𝑥  =  ( 𝑔 ‘ 𝑧 ) ) ) | 
						
							| 136 | 135 | ex | ⊢ ( 𝜑  →  ( ( ( ( 𝑔  ↾  𝐴 )  =  𝐹  ∧  𝑔 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝑔  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↔  𝑥  =  ( 𝑔 ‘ 𝑧 ) ) ) ) | 
						
							| 137 | 95 136 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∧  𝑥  ∈  ( 𝐵  ∖  ran  𝐹 ) )  →  ( 𝑔  =  ( 𝐹  ∪  { 〈 𝑧 ,  𝑥 〉 } )  ↔  𝑥  =  ( 𝑔 ‘ 𝑧 ) ) ) ) | 
						
							| 138 | 10 11 42 94 137 | en3d | ⊢ ( 𝜑  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝐹  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ≈  ( 𝐵  ∖  ran  𝐹 ) ) |