Step |
Hyp |
Ref |
Expression |
1 |
|
hashf1lem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
hashf1lem2.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
hashf1lem2.3 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) |
4 |
|
hashf1lem2.4 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
5 |
|
hashf1lem1.5 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
6 |
|
f1f |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
8 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
9 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
10 |
1 8 9
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
11 |
2 10
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ↔ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) |
12 |
7 11
|
syl5ibr |
⊢ ( 𝜑 → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 ∈ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ) ) |
13 |
12
|
abssdv |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ) |
14 |
|
ovex |
⊢ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ V |
15 |
|
ssexg |
⊢ ( ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∧ ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ V ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ V ) |
16 |
13 14 15
|
sylancl |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ V ) |
17 |
|
difexg |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ ran 𝐹 ) ∈ V ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∖ ran 𝐹 ) ∈ V ) |
19 |
|
vex |
⊢ 𝑔 ∈ V |
20 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ 𝐴 ) = ( 𝑔 ↾ 𝐴 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( 𝑔 ↾ 𝐴 ) = 𝐹 ) ) |
22 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
23 |
21 22
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
24 |
19 23
|
elab |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
25 |
|
f1f |
⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
26 |
25
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
27 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
28
|
snss |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
30 |
27 29
|
mpbir |
⊢ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) |
31 |
|
ffvelrn |
⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
32 |
26 30 31
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
33 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
34 |
|
df-ima |
⊢ ( 𝑔 “ 𝐴 ) = ran ( 𝑔 ↾ 𝐴 ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) |
36 |
35
|
rneqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ran ( 𝑔 ↾ 𝐴 ) = ran 𝐹 ) |
37 |
34 36
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 “ 𝐴 ) = ran 𝐹 ) |
38 |
37
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) ) |
39 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
40 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) |
41 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) |
42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
43 |
|
f1elima |
⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) |
44 |
39 40 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) |
45 |
38 44
|
bitr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
46 |
33 45
|
mtbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) |
47 |
32 46
|
eldifd |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) |
48 |
47
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
49 |
24 48
|
syl5bi |
⊢ ( 𝜑 → ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
50 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
51 |
5 50
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
53 |
|
vex |
⊢ 𝑥 ∈ V |
54 |
28 53
|
f1osn |
⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } |
55 |
|
f1of |
⊢ ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ) |
56 |
54 55
|
ax-mp |
⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } |
57 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → 𝑥 ∈ 𝐵 ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝑥 ∈ 𝐵 ) |
59 |
58
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 𝑥 } ⊆ 𝐵 ) |
60 |
|
fss |
⊢ ( ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ∧ { 𝑥 } ⊆ 𝐵 ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) |
61 |
56 59 60
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) |
62 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
63 |
|
res0 |
⊢ ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) = ∅ |
64 |
62 63
|
eqtr4i |
⊢ ( 𝐹 ↾ ∅ ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) |
65 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) |
66 |
3 65
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
68 |
67
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( 𝐹 ↾ ∅ ) ) |
69 |
67
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) ) |
70 |
64 68 69
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) |
71 |
|
fresaunres1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) |
72 |
52 61 70 71
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) |
73 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
74 |
5 73
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
76 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) |
77 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ¬ 𝑥 ∈ ran 𝐹 ) |
78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ¬ 𝑥 ∈ ran 𝐹 ) |
79 |
|
disjsn |
⊢ ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 ) |
80 |
78 79
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) |
81 |
|
f1oun |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) ∧ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
82 |
75 76 67 80 81
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
83 |
|
f1of1 |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
85 |
52
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ran 𝐹 ⊆ 𝐵 ) |
86 |
85 59
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) |
87 |
|
f1ss |
⊢ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ∧ ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
88 |
84 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
89 |
51 1
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 ∈ V ) |
91 |
|
snex |
⊢ { 〈 𝑧 , 𝑥 〉 } ∈ V |
92 |
|
unexg |
⊢ ( ( 𝐹 ∈ V ∧ { 〈 𝑧 , 𝑥 〉 } ∈ V ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) |
93 |
90 91 92
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) |
94 |
|
reseq1 |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 ↾ 𝐴 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) ) |
95 |
94
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) ) |
96 |
|
f1eq1 |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
97 |
95 96
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
98 |
97
|
elabg |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
99 |
93 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
100 |
72 88 99
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
101 |
100
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
102 |
24
|
anbi1i |
⊢ ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ↔ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
103 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
104 |
|
f1fn |
⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) |
105 |
103 104
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) |
106 |
82
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
107 |
|
f1ofn |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) |
108 |
106 107
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) |
109 |
|
eqfnfv |
⊢ ( ( 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
110 |
105 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
111 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) |
112 |
111
|
eqcomd |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑔 ‘ 𝑦 ) = ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) ) |
113 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) |
114 |
113
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
115 |
112 114
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
116 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
117 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
118 |
116 117
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
119 |
28 53
|
fnsn |
⊢ { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } |
120 |
119
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } ) |
121 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
122 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
123 |
118 120 121 122
|
fvun1d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
124 |
115 123
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
125 |
124
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
126 |
125
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) ) |
127 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
128 |
126 127
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
129 |
51
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
130 |
129
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
131 |
3 130
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑧 ∈ dom 𝐹 ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ¬ 𝑧 ∈ dom 𝐹 ) |
133 |
|
fsnunfv |
⊢ ( ( 𝑧 ∈ V ∧ 𝑥 ∈ V ∧ ¬ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) |
134 |
28 53 132 133
|
mp3an12i |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) |
135 |
134
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) ) |
136 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑧 ) ) |
137 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) |
138 |
136 137
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) ) |
139 |
28 138
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) |
140 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) |
141 |
135 139 140
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
142 |
110 128 141
|
3bitr2d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
143 |
142
|
ex |
⊢ ( 𝜑 → ( ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
144 |
102 143
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
145 |
16 18 49 101 144
|
en3d |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝐹 ) ) |