Step |
Hyp |
Ref |
Expression |
1 |
|
hashf1lem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
hashf1lem2.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
hashf1lem2.3 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) |
4 |
|
hashf1lem2.4 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
5 |
|
ssid |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } |
6 |
|
mapfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) |
7 |
2 1 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) |
8 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
9 |
2 1
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
10 |
8 9
|
syl5ibr |
⊢ ( 𝜑 → ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
11 |
10
|
abssdv |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) ) |
12 |
7 11
|
ssfid |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin ) |
13 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
14 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ∅ ) ) |
15 |
|
noel |
⊢ ¬ ( 𝑓 ↾ 𝐴 ) ∈ ∅ |
16 |
15
|
pm2.21i |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ∅ → 𝑓 ∈ ∅ ) |
17 |
14 16
|
syl6bi |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 → 𝑓 ∈ ∅ ) ) |
18 |
17
|
adantrd |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 ∈ ∅ ) ) |
19 |
18
|
abssdv |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ ) |
20 |
|
ss0 |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) |
21 |
19 20
|
syl |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) |
22 |
21
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ∅ ) ) |
23 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
24 |
22 23
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = 0 ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
26 |
25 23
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
27 |
26
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
28 |
24 27
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
29 |
13 28
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) ) |
31 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
32 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) ) |
33 |
32
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
34 |
33
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
35 |
34
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
39 |
31 38
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
41 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
42 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ) ) |
43 |
42
|
anbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
44 |
43
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
45 |
44
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
46 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) |
48 |
45 47
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
49 |
41 48
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
50 |
49
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
51 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
52 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑦 : 𝐴 –1-1→ 𝐵 ) ) |
53 |
52
|
cbvabv |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } |
54 |
53
|
eqeq2i |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
55 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) |
56 |
|
f1ssres |
⊢ ( ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
57 |
55 56
|
mpan2 |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
58 |
|
vex |
⊢ 𝑓 ∈ V |
59 |
58
|
resex |
⊢ ( 𝑓 ↾ 𝐴 ) ∈ V |
60 |
|
f1eq1 |
⊢ ( 𝑦 = ( 𝑓 ↾ 𝐴 ) → ( 𝑦 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) ) |
61 |
59 60
|
elab |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
62 |
57 61
|
sylibr |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
63 |
|
eleq2 |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) ) |
64 |
62 63
|
syl5ibr |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ) ) |
65 |
64
|
pm4.71rd |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
66 |
65
|
bicomd |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
67 |
66
|
abbidv |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
68 |
54 67
|
sylbi |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
69 |
68
|
fveq2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
70 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
71 |
70
|
oveq2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |
72 |
69 71
|
eqeq12d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
73 |
51 72
|
imbi12d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
74 |
73
|
imbi2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) ) |
75 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
76 |
2 75
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
77 |
76
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
78 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
79 |
1 78
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
80 |
79
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
81 |
77 80
|
subcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
82 |
81
|
mul01d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) = 0 ) |
83 |
82
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
84 |
83
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
85 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) |
86 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
87 |
85 86
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
88 |
87
|
imim1i |
⊢ ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
89 |
|
oveq1 |
⊢ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
90 |
|
elun |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ) |
91 |
59
|
elsn |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ↔ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) |
92 |
91
|
orbi2i |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
93 |
90 92
|
bitri |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
94 |
93
|
anbi1i |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
95 |
|
andir |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
96 |
94 95
|
bitri |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
97 |
96
|
abbii |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
98 |
|
unab |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
99 |
97 98
|
eqtr4i |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
100 |
99
|
fveq2i |
⊢ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
101 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
102 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
103 |
1 101 102
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
104 |
|
mapvalg |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) |
105 |
2 103 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) |
106 |
|
mapfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) |
107 |
2 103 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) |
108 |
105 107
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ) |
109 |
|
f1f |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
111 |
110
|
ss2abi |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
112 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
113 |
108 111 112
|
sylancl |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
115 |
109
|
adantl |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
116 |
115
|
ss2abi |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
117 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
118 |
108 116 117
|
sylancl |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
120 |
|
inab |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
121 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ¬ 𝑎 ∈ 𝑦 ) |
122 |
|
abn0 |
⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ ↔ ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
123 |
|
simprl |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) = 𝑎 ) |
124 |
|
simpll |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) |
125 |
123 124
|
eqeltrrd |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
126 |
125
|
exlimiv |
⊢ ( ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
127 |
122 126
|
sylbi |
⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ → 𝑎 ∈ 𝑦 ) |
128 |
127
|
necon1bi |
⊢ ( ¬ 𝑎 ∈ 𝑦 → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
129 |
121 128
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
130 |
120 129
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) |
131 |
|
hashun |
⊢ ( ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
132 |
114 119 130 131
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
133 |
100 132
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
134 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
135 |
134
|
unssbd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
136 |
|
vex |
⊢ 𝑎 ∈ V |
137 |
136
|
snss |
⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
138 |
135 137
|
sylibr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
139 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) ) |
140 |
136 139
|
elab |
⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) |
141 |
138 140
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) |
142 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
143 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
144 |
|
hashcl |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) |
145 |
143 144
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) |
146 |
145
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℂ ) |
147 |
142 146
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
148 |
|
f1f1orn |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) |
149 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) |
150 |
|
f1oen3g |
⊢ ( ( 𝑎 ∈ V ∧ 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) → 𝐴 ≈ ran 𝑎 ) |
151 |
136 149 150
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝑎 ) |
152 |
|
hasheni |
⊢ ( 𝐴 ≈ ran 𝑎 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) |
153 |
151 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) |
154 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ Fin ) |
155 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐵 ∈ Fin ) |
156 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ¬ 𝑧 ∈ 𝐴 ) |
157 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
158 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) |
159 |
154 155 156 157 158
|
hashf1lem1 |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) ) |
160 |
|
hasheni |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) |
161 |
159 160
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) |
162 |
153 161
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
163 |
|
f1f |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 ⟶ 𝐵 ) |
164 |
163
|
frnd |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → ran 𝑎 ⊆ 𝐵 ) |
165 |
164
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ⊆ 𝐵 ) |
166 |
155 165
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ∈ Fin ) |
167 |
|
diffi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) |
168 |
155 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) |
169 |
|
disjdif |
⊢ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ |
170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) |
171 |
|
hashun |
⊢ ( ( ran 𝑎 ∈ Fin ∧ ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ∧ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
172 |
166 168 170 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
173 |
|
undif |
⊢ ( ran 𝑎 ⊆ 𝐵 ↔ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) |
174 |
165 173
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) |
175 |
174
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
176 |
162 172 175
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ♯ ‘ 𝐵 ) ) |
177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
178 |
147 177
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
179 |
141 178
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
180 |
179
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
181 |
133 180
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
182 |
|
hashunsng |
⊢ ( 𝑎 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
183 |
182
|
elv |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
184 |
183
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
185 |
184
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
186 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
187 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 𝑦 ∈ Fin ) |
188 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
189 |
187 188
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
190 |
189
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
191 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 1 ∈ ℂ ) |
192 |
186 190 191
|
adddid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) ) |
193 |
186
|
mulid1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
194 |
193
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
195 |
185 192 194
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
196 |
181 195
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ↔ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) ) |
197 |
89 196
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
198 |
197
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
199 |
198
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
200 |
88 199
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
201 |
200
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
202 |
201
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
203 |
30 40 50 74 84 202
|
findcard2s |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin → ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
204 |
12 203
|
mpcom |
⊢ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
205 |
5 204
|
mpi |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |