| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashf1lem2.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hashf1lem2.2 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | hashf1lem2.3 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 4 |  | hashf1lem2.4 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  +  1 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 5 |  | ssid | ⊢ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } | 
						
							| 6 |  | mapfi | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ∈  Fin )  →  ( 𝐵  ↑m  𝐴 )  ∈  Fin ) | 
						
							| 7 | 2 1 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ↑m  𝐴 )  ∈  Fin ) | 
						
							| 8 |  | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  𝑓 : 𝐴 ⟶ 𝐵 ) | 
						
							| 9 | 2 1 | elmapd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↔  𝑓 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 10 | 8 9 | imbitrrid | ⊢ ( 𝜑  →  ( 𝑓 : 𝐴 –1-1→ 𝐵  →  𝑓  ∈  ( 𝐵  ↑m  𝐴 ) ) ) | 
						
							| 11 | 10 | abssdv | ⊢ ( 𝜑  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 12 | 7 11 | ssfid | ⊢ ( 𝜑  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ∈  Fin ) | 
						
							| 13 |  | sseq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  ∅  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 14 |  | eleq2 | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ↔  ( 𝑓  ↾  𝐴 )  ∈  ∅ ) ) | 
						
							| 15 |  | noel | ⊢ ¬  ( 𝑓  ↾  𝐴 )  ∈  ∅ | 
						
							| 16 | 15 | pm2.21i | ⊢ ( ( 𝑓  ↾  𝐴 )  ∈  ∅  →  𝑓  ∈  ∅ ) | 
						
							| 17 | 14 16 | biimtrdi | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  →  𝑓  ∈  ∅ ) ) | 
						
							| 18 | 17 | adantrd | ⊢ ( 𝑥  =  ∅  →  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  →  𝑓  ∈  ∅ ) ) | 
						
							| 19 | 18 | abssdv | ⊢ ( 𝑥  =  ∅  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  ∅ ) | 
						
							| 20 |  | ss0 | ⊢ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  ∅  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  ∅ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑥  =  ∅  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  ∅ ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 23 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  0 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 26 | 25 23 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) | 
						
							| 28 | 24 27 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  ↔  0  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) ) | 
						
							| 29 | 13 28 | imbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) )  ↔  ( ∅  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  0  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝜑  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( ∅  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  0  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) ) ) ) | 
						
							| 31 |  | sseq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 32 |  | eleq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ↔  ( 𝑓  ↾  𝐴 )  ∈  𝑦 ) ) | 
						
							| 33 | 32 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 34 | 33 | abbidv | ⊢ ( 𝑥  =  𝑦  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 38 | 35 37 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 31 38 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) )  ↔  ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 41 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 42 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ↔  ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } ) ) ) | 
						
							| 43 | 42 | anbi1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 44 | 43 | abbidv | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) | 
						
							| 48 | 45 47 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) | 
						
							| 49 | 41 48 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) )  ↔  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) | 
						
							| 50 | 49 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑎 } )  →  ( ( 𝜑  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) ) | 
						
							| 51 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 52 |  | f1eq1 | ⊢ ( 𝑓  =  𝑦  →  ( 𝑓 : 𝐴 –1-1→ 𝐵  ↔  𝑦 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 53 | 52 | cbvabv | ⊢ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 } | 
						
							| 54 | 53 | eqeq2i | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 55 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) | 
						
							| 56 |  | f1ssres | ⊢ ( ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  ∧  𝐴  ⊆  ( 𝐴  ∪  { 𝑧 } ) )  →  ( 𝑓  ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 ) | 
						
							| 57 | 55 56 | mpan2 | ⊢ ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  ( 𝑓  ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 ) | 
						
							| 58 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 59 | 58 | resex | ⊢ ( 𝑓  ↾  𝐴 )  ∈  V | 
						
							| 60 |  | f1eq1 | ⊢ ( 𝑦  =  ( 𝑓  ↾  𝐴 )  →  ( 𝑦 : 𝐴 –1-1→ 𝐵  ↔  ( 𝑓  ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 61 | 59 60 | elab | ⊢ ( ( 𝑓  ↾  𝐴 )  ∈  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  ↔  ( 𝑓  ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 ) | 
						
							| 62 | 57 61 | sylibr | ⊢ ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  ( 𝑓  ↾  𝐴 )  ∈  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 63 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  →  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ↔  ( 𝑓  ↾  𝐴 )  ∈  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 64 | 62 63 | imbitrrid | ⊢ ( 𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  →  ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  ( 𝑓  ↾  𝐴 )  ∈  𝑥 ) ) | 
						
							| 65 | 64 | pm4.71rd | ⊢ ( 𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  →  ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 66 | 65 | bicomd | ⊢ ( 𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  →  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) | 
						
							| 67 | 66 | abbidv | ⊢ ( 𝑥  =  { 𝑦  ∣  𝑦 : 𝐴 –1-1→ 𝐵 }  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } ) | 
						
							| 68 | 54 67 | sylbi | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) | 
						
							| 72 | 69 71 | eqeq12d | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) | 
						
							| 73 | 51 72 | imbi12d | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) )  ↔  ( { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) | 
						
							| 74 | 73 | imbi2d | ⊢ ( 𝑥  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ( 𝜑  →  ( 𝑥  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑥  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) ) | 
						
							| 75 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 76 | 2 75 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 77 | 76 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 78 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 79 | 1 78 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 81 | 77 80 | subcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 82 | 81 | mul01d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 )  =  0 ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) | 
						
							| 84 | 83 | a1d | ⊢ ( 𝜑  →  ( ∅  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  0  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  0 ) ) ) | 
						
							| 85 |  | ssun1 | ⊢ 𝑦  ⊆  ( 𝑦  ∪  { 𝑎 } ) | 
						
							| 86 |  | sstr | ⊢ ( ( 𝑦  ⊆  ( 𝑦  ∪  { 𝑎 } )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } )  →  𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 87 | 85 86 | mpan | ⊢ ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 88 | 87 | imim1i | ⊢ ( ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) ) | 
						
							| 89 |  | oveq1 | ⊢ ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) )  =  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 90 |  | elun | ⊢ ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  ∈  { 𝑎 } ) ) | 
						
							| 91 | 59 | elsn | ⊢ ( ( 𝑓  ↾  𝐴 )  ∈  { 𝑎 }  ↔  ( 𝑓  ↾  𝐴 )  =  𝑎 ) | 
						
							| 92 | 91 | orbi2i | ⊢ ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  ∈  { 𝑎 } )  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  =  𝑎 ) ) | 
						
							| 93 | 90 92 | bitri | ⊢ ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ↔  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  =  𝑎 ) ) | 
						
							| 94 | 93 | anbi1i | ⊢ ( ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  =  𝑎 )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) | 
						
							| 95 |  | andir | ⊢ ( ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∨  ( 𝑓  ↾  𝐴 )  =  𝑎 )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∨  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 96 | 94 95 | bitri | ⊢ ( ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ↔  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∨  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 97 | 96 | abbii | ⊢ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∨  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) } | 
						
							| 98 |  | unab | ⊢ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∪  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∨  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) } | 
						
							| 99 | 97 98 | eqtr4i | ⊢ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  =  ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∪  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) | 
						
							| 100 | 99 | fveq2i | ⊢ ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∪  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) | 
						
							| 101 |  | snfi | ⊢ { 𝑧 }  ∈  Fin | 
						
							| 102 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑧 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 103 | 1 101 102 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 104 |  | mapvalg | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin )  →  ( 𝐵  ↑m  ( 𝐴  ∪  { 𝑧 } ) )  =  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } ) | 
						
							| 105 | 2 103 104 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ↑m  ( 𝐴  ∪  { 𝑧 } ) )  =  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } ) | 
						
							| 106 |  | mapfi | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐴  ∪  { 𝑧 } )  ∈  Fin )  →  ( 𝐵  ↑m  ( 𝐴  ∪  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 107 | 2 103 106 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ↑m  ( 𝐴  ∪  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 108 | 105 107 | eqeltrrd | ⊢ ( 𝜑  →  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 }  ∈  Fin ) | 
						
							| 109 |  | f1f | ⊢ ( 𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵  →  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  →  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 111 | 110 | ss2abi | ⊢ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } | 
						
							| 112 |  | ssfi | ⊢ ( ( { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 }  ∈  Fin  ∧  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 113 | 108 111 112 | sylancl | ⊢ ( 𝜑  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 115 | 109 | adantl | ⊢ ( ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  →  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 116 | 115 | ss2abi | ⊢ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } | 
						
							| 117 |  | ssfi | ⊢ ( ( { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 }  ∈  Fin  ∧  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) ⟶ 𝐵 } )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 118 | 108 116 117 | sylancl | ⊢ ( 𝜑  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 120 |  | inab | ⊢ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∩  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) } | 
						
							| 121 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ¬  𝑎  ∈  𝑦 ) | 
						
							| 122 |  | abn0 | ⊢ ( { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) }  ≠  ∅  ↔  ∃ 𝑓 ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) ) | 
						
							| 123 |  | simprl | ⊢ ( ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑓  ↾  𝐴 )  =  𝑎 ) | 
						
							| 124 |  | simpll | ⊢ ( ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  ( 𝑓  ↾  𝐴 )  ∈  𝑦 ) | 
						
							| 125 | 123 124 | eqeltrrd | ⊢ ( ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝑎  ∈  𝑦 ) | 
						
							| 126 | 125 | exlimiv | ⊢ ( ∃ 𝑓 ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) )  →  𝑎  ∈  𝑦 ) | 
						
							| 127 | 122 126 | sylbi | ⊢ ( { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) }  ≠  ∅  →  𝑎  ∈  𝑦 ) | 
						
							| 128 | 127 | necon1bi | ⊢ ( ¬  𝑎  ∈  𝑦  →  { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) }  =  ∅ ) | 
						
							| 129 | 121 128 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  { 𝑓  ∣  ( ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 )  ∧  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) ) }  =  ∅ ) | 
						
							| 130 | 120 129 | eqtrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∩  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ∅ ) | 
						
							| 131 |  | hashun | ⊢ ( ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin  ∧  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin  ∧  ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∩  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ∅ )  →  ( ♯ ‘ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∪  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  =  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) | 
						
							| 132 | 114 119 130 131 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∪  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  =  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) | 
						
							| 133 | 100 132 | eqtrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) | 
						
							| 134 |  | simpr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } )  →  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 135 | 134 | unssbd | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } )  →  { 𝑎 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 136 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 137 | 136 | snss | ⊢ ( 𝑎  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  { 𝑎 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 138 | 135 137 | sylibr | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } )  →  𝑎  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) | 
						
							| 139 |  | f1eq1 | ⊢ ( 𝑓  =  𝑎  →  ( 𝑓 : 𝐴 –1-1→ 𝐵  ↔  𝑎 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 140 | 136 139 | elab | ⊢ ( 𝑎  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ↔  𝑎 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 141 | 138 140 | sylib | ⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } )  →  𝑎 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 142 | 80 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 143 | 118 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin ) | 
						
							| 144 |  | hashcl | ⊢ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  ∈  ℕ0 ) | 
						
							| 145 | 143 144 | syl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  ∈  ℕ0 ) | 
						
							| 146 | 145 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  ∈  ℂ ) | 
						
							| 147 | 142 146 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  −  ( ♯ ‘ 𝐴 ) )  =  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) ) | 
						
							| 148 |  | f1f1orn | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵  →  𝑎 : 𝐴 –1-1-onto→ ran  𝑎 ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  𝑎 : 𝐴 –1-1-onto→ ran  𝑎 ) | 
						
							| 150 |  | f1oen3g | ⊢ ( ( 𝑎  ∈  V  ∧  𝑎 : 𝐴 –1-1-onto→ ran  𝑎 )  →  𝐴  ≈  ran  𝑎 ) | 
						
							| 151 | 136 149 150 | sylancr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  𝐴  ≈  ran  𝑎 ) | 
						
							| 152 |  | hasheni | ⊢ ( 𝐴  ≈  ran  𝑎  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ran  𝑎 ) ) | 
						
							| 153 | 151 152 | syl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ran  𝑎 ) ) | 
						
							| 154 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  𝐴  ∈  Fin ) | 
						
							| 155 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 156 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 157 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ( ♯ ‘ 𝐴 )  +  1 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 158 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  𝑎 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 159 | 154 155 156 157 158 | hashf1lem1 | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ≈  ( 𝐵  ∖  ran  𝑎 ) ) | 
						
							| 160 |  | hasheni | ⊢ ( { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) }  ≈  ( 𝐵  ∖  ran  𝑎 )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ ( 𝐵  ∖  ran  𝑎 ) ) ) | 
						
							| 161 | 159 160 | syl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ♯ ‘ ( 𝐵  ∖  ran  𝑎 ) ) ) | 
						
							| 162 | 153 161 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  =  ( ( ♯ ‘ ran  𝑎 )  +  ( ♯ ‘ ( 𝐵  ∖  ran  𝑎 ) ) ) ) | 
						
							| 163 |  | f1f | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵  →  𝑎 : 𝐴 ⟶ 𝐵 ) | 
						
							| 164 | 163 | frnd | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵  →  ran  𝑎  ⊆  𝐵 ) | 
						
							| 165 | 164 | adantl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ran  𝑎  ⊆  𝐵 ) | 
						
							| 166 | 155 165 | ssfid | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ran  𝑎  ∈  Fin ) | 
						
							| 167 |  | diffi | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐵  ∖  ran  𝑎 )  ∈  Fin ) | 
						
							| 168 | 155 167 | syl | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐵  ∖  ran  𝑎 )  ∈  Fin ) | 
						
							| 169 |  | disjdif | ⊢ ( ran  𝑎  ∩  ( 𝐵  ∖  ran  𝑎 ) )  =  ∅ | 
						
							| 170 | 169 | a1i | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝑎  ∩  ( 𝐵  ∖  ran  𝑎 ) )  =  ∅ ) | 
						
							| 171 |  | hashun | ⊢ ( ( ran  𝑎  ∈  Fin  ∧  ( 𝐵  ∖  ran  𝑎 )  ∈  Fin  ∧  ( ran  𝑎  ∩  ( 𝐵  ∖  ran  𝑎 ) )  =  ∅ )  →  ( ♯ ‘ ( ran  𝑎  ∪  ( 𝐵  ∖  ran  𝑎 ) ) )  =  ( ( ♯ ‘ ran  𝑎 )  +  ( ♯ ‘ ( 𝐵  ∖  ran  𝑎 ) ) ) ) | 
						
							| 172 | 166 168 170 171 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ ( ran  𝑎  ∪  ( 𝐵  ∖  ran  𝑎 ) ) )  =  ( ( ♯ ‘ ran  𝑎 )  +  ( ♯ ‘ ( 𝐵  ∖  ran  𝑎 ) ) ) ) | 
						
							| 173 |  | undif | ⊢ ( ran  𝑎  ⊆  𝐵  ↔  ( ran  𝑎  ∪  ( 𝐵  ∖  ran  𝑎 ) )  =  𝐵 ) | 
						
							| 174 | 165 173 | sylib | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝑎  ∪  ( 𝐵  ∖  ran  𝑎 ) )  =  𝐵 ) | 
						
							| 175 | 174 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ ( ran  𝑎  ∪  ( 𝐵  ∖  ran  𝑎 ) ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 176 | 162 172 175 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 177 | 176 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 178 | 147 177 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑎 : 𝐴 –1-1→ 𝐵 )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 179 | 141 178 | sylan2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 180 | 179 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  =  𝑎  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } ) )  =  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 181 | 133 180 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 182 |  | hashunsng | ⊢ ( 𝑎  ∈  V  →  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 183 | 182 | elv | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) | 
						
							| 184 | 183 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) | 
						
							| 185 | 184 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ( ♯ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 186 | 81 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 187 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  𝑦  ∈  Fin ) | 
						
							| 188 |  | hashcl | ⊢ ( 𝑦  ∈  Fin  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 189 | 187 188 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 190 | 189 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ♯ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 191 |  | 1cnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  1  ∈  ℂ ) | 
						
							| 192 | 186 190 191 | adddid | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ( ♯ ‘ 𝑦 )  +  1 ) )  =  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  1 ) ) ) | 
						
							| 193 | 186 | mulridd | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  1 )  =  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 194 | 193 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  1 ) )  =  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 195 | 185 192 194 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) )  =  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 196 | 181 195 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) )  ↔  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) )  =  ( ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  +  ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 197 | 89 196 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  ∧  ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) )  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) | 
						
							| 198 | 197 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 ) )  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) )  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) | 
						
							| 199 | 198 | a2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 ) )  →  ( ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) | 
						
							| 200 | 88 199 | syl5 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 ) )  →  ( ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) | 
						
							| 201 | 200 | expcom | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  →  ( 𝜑  →  ( ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) )  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) ) | 
						
							| 202 | 201 | a2d | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑎  ∈  𝑦 )  →  ( ( 𝜑  →  ( 𝑦  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  𝑦  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ 𝑦 ) ) ) )  →  ( 𝜑  →  ( ( 𝑦  ∪  { 𝑎 } )  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  ( ( 𝑓  ↾  𝐴 )  ∈  ( 𝑦  ∪  { 𝑎 } )  ∧  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 ) } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ ( 𝑦  ∪  { 𝑎 } ) ) ) ) ) ) ) | 
						
							| 203 | 30 40 50 74 84 202 | findcard2s | ⊢ ( { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ∈  Fin  →  ( 𝜑  →  ( { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) | 
						
							| 204 | 12 203 | mpcom | ⊢ ( 𝜑  →  ( { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  ⊆  { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 }  →  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) | 
						
							| 205 | 5 204 | mpi | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑓  ∣  𝑓 : ( 𝐴  ∪  { 𝑧 } ) –1-1→ 𝐵 } )  =  ( ( ( ♯ ‘ 𝐵 )  −  ( ♯ ‘ 𝐴 ) )  ·  ( ♯ ‘ { 𝑓  ∣  𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |