| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf1 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| 2 |
1
|
anidms |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| 3 |
|
enrefg |
⊢ ( 𝐴 ∈ Fin → 𝐴 ≈ 𝐴 ) |
| 4 |
|
f1finf1o |
⊢ ( ( 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑓 : 𝐴 –1-1→ 𝐴 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 5 |
3 4
|
mpancom |
⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1→ 𝐴 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 6 |
5
|
abbidv |
⊢ ( 𝐴 ∈ Fin → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) |
| 8 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 9 |
|
bcnn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · 1 ) ) |
| 12 |
8
|
faccld |
⊢ ( 𝐴 ∈ Fin → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℕ ) |
| 13 |
12
|
nncnd |
⊢ ( 𝐴 ∈ Fin → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 14 |
13
|
mulridd |
⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · 1 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 15 |
11 14
|
eqtrd |
⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 16 |
2 7 15
|
3eqtr3d |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |