| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren | ⊢ ( 𝐴  ≈  𝐵  ↔  ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | bren | ⊢ ( 𝐶  ≈  𝐷  ↔  ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) | 
						
							| 3 |  | exdistrv | ⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ↔  ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ) | 
						
							| 4 |  | f1osetex | ⊢ { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ∈  V ) | 
						
							| 6 |  | f1osetex | ⊢ { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 }  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 }  ∈  V ) | 
						
							| 8 |  | f1oco | ⊢ ( ( ℎ : 𝐶 –1-1-onto→ 𝐷  ∧  𝑥 : 𝐴 –1-1-onto→ 𝐶 )  →  ( ℎ  ∘  𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 9 | 8 | adantll | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑥 : 𝐴 –1-1-onto→ 𝐶 )  →  ( ℎ  ∘  𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 10 |  | f1ocnv | ⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑥 : 𝐴 –1-1-onto→ 𝐶 )  →  ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) | 
						
							| 12 |  | f1oco | ⊢ ( ( ( ℎ  ∘  𝑥 ) : 𝐴 –1-1-onto→ 𝐷  ∧  ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 )  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑥 : 𝐴 –1-1-onto→ 𝐶 )  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 16 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑥  →  ( 𝑓 : 𝐴 –1-1-onto→ 𝐶  ↔  𝑥 : 𝐴 –1-1-onto→ 𝐶 ) ) | 
						
							| 17 | 15 16 | elab | ⊢ ( 𝑥  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ↔  𝑥 : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 18 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 19 | 18 15 | coex | ⊢ ( ℎ  ∘  𝑥 )  ∈  V | 
						
							| 20 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 21 | 20 | cnvex | ⊢ ◡ 𝑔  ∈  V | 
						
							| 22 | 19 21 | coex | ⊢ ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∈  V | 
						
							| 23 |  | f1oeq1 | ⊢ ( 𝑓  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  →  ( 𝑓 : 𝐵 –1-1-onto→ 𝐷  ↔  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) | 
						
							| 24 | 22 23 | elab | ⊢ ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 }  ↔  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 25 | 14 17 24 | 3imtr4g | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( 𝑥  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) ) | 
						
							| 26 |  | f1ocnv | ⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷  →  ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) | 
						
							| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 )  →  ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) | 
						
							| 28 |  | f1oco | ⊢ ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑔 : 𝐴 –1-1-onto→ 𝐵 )  →  ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 29 | 28 | ancoms | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 )  →  ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 )  →  ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 31 |  | f1oco | ⊢ ( ( ◡ ℎ : 𝐷 –1-1-onto→ 𝐶  ∧  ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷 )  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 32 | 27 30 31 | syl2anc | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 )  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( 𝑦 : 𝐵 –1-1-onto→ 𝐷  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) | 
						
							| 34 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 35 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑦  →  ( 𝑓 : 𝐵 –1-1-onto→ 𝐷  ↔  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) | 
						
							| 36 | 34 35 | elab | ⊢ ( 𝑦  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 }  ↔  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 37 | 18 | cnvex | ⊢ ◡ ℎ  ∈  V | 
						
							| 38 | 34 20 | coex | ⊢ ( 𝑦  ∘  𝑔 )  ∈  V | 
						
							| 39 | 37 38 | coex | ⊢ ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ∈  V | 
						
							| 40 |  | f1oeq1 | ⊢ ( 𝑓  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  →  ( 𝑓 : 𝐴 –1-1-onto→ 𝐶  ↔  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) | 
						
							| 41 | 39 40 | elab | ⊢ ( ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ↔  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 42 | 33 36 41 | 3imtr4g | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( 𝑦  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 }  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 } ) ) | 
						
							| 43 | 17 36 | anbi12i | ⊢ ( ( 𝑥  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ∧  𝑦  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } )  ↔  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) | 
						
							| 44 |  | coass | ⊢ ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 )  =  ( ( ℎ  ∘  𝑥 )  ∘  ( ◡ 𝑔  ∘  𝑔 ) ) | 
						
							| 45 |  | f1ococnv1 | ⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  →  ( ◡ 𝑔  ∘  𝑔 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ◡ 𝑔  ∘  𝑔 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 47 | 46 | coeq2d | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  ∘  ( ◡ 𝑔  ∘  𝑔 ) )  =  ( ( ℎ  ∘  𝑥 )  ∘  (  I   ↾  𝐴 ) ) ) | 
						
							| 48 | 9 | adantrr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ℎ  ∘  𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 49 |  | f1of | ⊢ ( ( ℎ  ∘  𝑥 ) : 𝐴 –1-1-onto→ 𝐷  →  ( ℎ  ∘  𝑥 ) : 𝐴 ⟶ 𝐷 ) | 
						
							| 50 |  | fcoi1 | ⊢ ( ( ℎ  ∘  𝑥 ) : 𝐴 ⟶ 𝐷  →  ( ( ℎ  ∘  𝑥 )  ∘  (  I   ↾  𝐴 ) )  =  ( ℎ  ∘  𝑥 ) ) | 
						
							| 51 | 48 49 50 | 3syl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  ∘  (  I   ↾  𝐴 ) )  =  ( ℎ  ∘  𝑥 ) ) | 
						
							| 52 | 47 51 | eqtrd | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  ∘  ( ◡ 𝑔  ∘  𝑔 ) )  =  ( ℎ  ∘  𝑥 ) ) | 
						
							| 53 | 44 52 | eqtr2id | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ℎ  ∘  𝑥 )  =  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 ) ) | 
						
							| 54 |  | coass | ⊢ ( ( ℎ  ∘  ◡ ℎ )  ∘  ( 𝑦  ∘  𝑔 ) )  =  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) ) | 
						
							| 55 |  | f1ococnv2 | ⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷  →  ( ℎ  ∘  ◡ ℎ )  =  (  I   ↾  𝐷 ) ) | 
						
							| 56 | 55 | ad2antlr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ℎ  ∘  ◡ ℎ )  =  (  I   ↾  𝐷 ) ) | 
						
							| 57 | 56 | coeq1d | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  ◡ ℎ )  ∘  ( 𝑦  ∘  𝑔 ) )  =  ( (  I   ↾  𝐷 )  ∘  ( 𝑦  ∘  𝑔 ) ) ) | 
						
							| 58 | 30 | adantrl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) | 
						
							| 59 |  | f1of | ⊢ ( ( 𝑦  ∘  𝑔 ) : 𝐴 –1-1-onto→ 𝐷  →  ( 𝑦  ∘  𝑔 ) : 𝐴 ⟶ 𝐷 ) | 
						
							| 60 |  | fcoi2 | ⊢ ( ( 𝑦  ∘  𝑔 ) : 𝐴 ⟶ 𝐷  →  ( (  I   ↾  𝐷 )  ∘  ( 𝑦  ∘  𝑔 ) )  =  ( 𝑦  ∘  𝑔 ) ) | 
						
							| 61 | 58 59 60 | 3syl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( (  I   ↾  𝐷 )  ∘  ( 𝑦  ∘  𝑔 ) )  =  ( 𝑦  ∘  𝑔 ) ) | 
						
							| 62 | 57 61 | eqtrd | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  ◡ ℎ )  ∘  ( 𝑦  ∘  𝑔 ) )  =  ( 𝑦  ∘  𝑔 ) ) | 
						
							| 63 | 54 62 | eqtr3id | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) )  =  ( 𝑦  ∘  𝑔 ) ) | 
						
							| 64 | 53 63 | eqeq12d | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  =  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) )  ↔  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 )  =  ( 𝑦  ∘  𝑔 ) ) ) | 
						
							| 65 |  | eqcom | ⊢ ( ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 )  =  ( 𝑦  ∘  𝑔 )  ↔  ( 𝑦  ∘  𝑔 )  =  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 ) ) | 
						
							| 66 | 64 65 | bitrdi | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  =  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) )  ↔  ( 𝑦  ∘  𝑔 )  =  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 ) ) ) | 
						
							| 67 |  | f1of1 | ⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷  →  ℎ : 𝐶 –1-1→ 𝐷 ) | 
						
							| 68 | 67 | ad2antlr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ℎ : 𝐶 –1-1→ 𝐷 ) | 
						
							| 69 |  | f1of | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  →  𝑥 : 𝐴 ⟶ 𝐶 ) | 
						
							| 70 | 69 | ad2antrl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  𝑥 : 𝐴 ⟶ 𝐶 ) | 
						
							| 71 | 32 | adantrl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 72 |  | f1of | ⊢ ( ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 74 |  | cocan1 | ⊢ ( ( ℎ : 𝐶 –1-1→ 𝐷  ∧  𝑥 : 𝐴 ⟶ 𝐶  ∧  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) : 𝐴 ⟶ 𝐶 )  →  ( ( ℎ  ∘  𝑥 )  =  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) )  ↔  𝑥  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) ) ) | 
						
							| 75 | 68 70 73 74 | syl3anc | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  =  ( ℎ  ∘  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) )  ↔  𝑥  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) ) ) ) | 
						
							| 76 |  | f1ofo | ⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  →  𝑔 : 𝐴 –onto→ 𝐵 ) | 
						
							| 77 | 76 | ad2antrr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  𝑔 : 𝐴 –onto→ 𝐵 ) | 
						
							| 78 |  | f1ofn | ⊢ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷  →  𝑦  Fn  𝐵 ) | 
						
							| 79 | 78 | ad2antll | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  𝑦  Fn  𝐵 ) | 
						
							| 80 | 13 | adantrr | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 81 |  | f1ofn | ⊢ ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  Fn  𝐵 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  Fn  𝐵 ) | 
						
							| 83 |  | cocan2 | ⊢ ( ( 𝑔 : 𝐴 –onto→ 𝐵  ∧  𝑦  Fn  𝐵  ∧  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  Fn  𝐵 )  →  ( ( 𝑦  ∘  𝑔 )  =  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 )  ↔  𝑦  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) ) ) | 
						
							| 84 | 77 79 82 83 | syl3anc | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( ( 𝑦  ∘  𝑔 )  =  ( ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 )  ∘  𝑔 )  ↔  𝑦  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) ) ) | 
						
							| 85 | 66 75 84 | 3bitr3d | ⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 ) )  →  ( 𝑥  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ↔  𝑦  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) ) ) | 
						
							| 86 | 85 | ex | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐶  ∧  𝑦 : 𝐵 –1-1-onto→ 𝐷 )  →  ( 𝑥  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ↔  𝑦  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) ) ) ) | 
						
							| 87 | 43 86 | biimtrid | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  ( ( 𝑥  ∈  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ∧  𝑦  ∈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } )  →  ( 𝑥  =  ( ◡ ℎ  ∘  ( 𝑦  ∘  𝑔 ) )  ↔  𝑦  =  ( ( ℎ  ∘  𝑥 )  ∘  ◡ 𝑔 ) ) ) ) | 
						
							| 88 | 5 7 25 42 87 | en3d | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ≈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) | 
						
							| 89 | 88 | exlimivv | ⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ≈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) | 
						
							| 90 | 3 89 | sylbir | ⊢ ( ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵  ∧  ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ≈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) | 
						
							| 91 | 1 2 90 | syl2anb | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐶 }  ≈  { 𝑓  ∣  𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |