Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
bren |
⊢ ( 𝐶 ≈ 𝐷 ↔ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) |
3 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ) |
4 |
|
f1of |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 → 𝑓 : 𝐴 ⟶ 𝐶 ) |
5 |
|
f1odm |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → dom ℎ = 𝐶 ) |
6 |
|
vex |
⊢ ℎ ∈ V |
7 |
6
|
dmex |
⊢ dom ℎ ∈ V |
8 |
5 7
|
eqeltrrdi |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → 𝐶 ∈ V ) |
9 |
|
f1odm |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑔 = 𝐴 ) |
10 |
|
vex |
⊢ 𝑔 ∈ V |
11 |
10
|
dmex |
⊢ dom 𝑔 ∈ V |
12 |
9 11
|
eqeltrrdi |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
13 |
|
elmapg |
⊢ ( ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
14 |
8 12 13
|
syl2anr |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
15 |
4 14
|
syl5ibr |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 → 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ) ) |
16 |
15
|
abssdv |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ⊆ ( 𝐶 ↑m 𝐴 ) ) |
17 |
|
ovex |
⊢ ( 𝐶 ↑m 𝐴 ) ∈ V |
18 |
17
|
ssex |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ⊆ ( 𝐶 ↑m 𝐴 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∈ V ) |
19 |
16 18
|
syl |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∈ V ) |
20 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 → 𝑓 : 𝐵 ⟶ 𝐷 ) |
21 |
|
f1ofo |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ℎ : 𝐶 –onto→ 𝐷 ) |
22 |
|
forn |
⊢ ( ℎ : 𝐶 –onto→ 𝐷 → ran ℎ = 𝐷 ) |
23 |
21 22
|
syl |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ran ℎ = 𝐷 ) |
24 |
6
|
rnex |
⊢ ran ℎ ∈ V |
25 |
23 24
|
eqeltrrdi |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → 𝐷 ∈ V ) |
26 |
|
f1ofo |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → 𝑔 : 𝐴 –onto→ 𝐵 ) |
27 |
|
forn |
⊢ ( 𝑔 : 𝐴 –onto→ 𝐵 → ran 𝑔 = 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑔 = 𝐵 ) |
29 |
10
|
rnex |
⊢ ran 𝑔 ∈ V |
30 |
28 29
|
eqeltrrdi |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
31 |
|
elmapg |
⊢ ( ( 𝐷 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐷 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐷 ) ) |
32 |
25 30 31
|
syl2anr |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑓 ∈ ( 𝐷 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐷 ) ) |
33 |
20 32
|
syl5ibr |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 → 𝑓 ∈ ( 𝐷 ↑m 𝐵 ) ) ) |
34 |
33
|
abssdv |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ⊆ ( 𝐷 ↑m 𝐵 ) ) |
35 |
|
ovex |
⊢ ( 𝐷 ↑m 𝐵 ) ∈ V |
36 |
35
|
ssex |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ⊆ ( 𝐷 ↑m 𝐵 ) → { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ∈ V ) |
37 |
34 36
|
syl |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ∈ V ) |
38 |
|
f1oco |
⊢ ( ( ℎ : 𝐶 –1-1-onto→ 𝐷 ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
39 |
38
|
adantll |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
40 |
|
f1ocnv |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
42 |
|
f1oco |
⊢ ( ( ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ∧ ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
43 |
39 41 42
|
syl2anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
44 |
43
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) |
45 |
|
vex |
⊢ 𝑥 ∈ V |
46 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑥 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) ) |
47 |
45 46
|
elab |
⊢ ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) |
48 |
6 45
|
coex |
⊢ ( ℎ ∘ 𝑥 ) ∈ V |
49 |
10
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
50 |
48 49
|
coex |
⊢ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ V |
51 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 ↔ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) |
52 |
50 51
|
elab |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ↔ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
53 |
44 47 52
|
3imtr4g |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) ) |
54 |
|
f1ocnv |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) |
56 |
|
f1oco |
⊢ ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
57 |
56
|
ancoms |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
59 |
|
f1oco |
⊢ ( ( ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ∧ ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
60 |
55 58 59
|
syl2anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
61 |
60
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) |
62 |
|
vex |
⊢ 𝑦 ∈ V |
63 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 ↔ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) |
64 |
62 63
|
elab |
⊢ ( 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ↔ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) |
65 |
6
|
cnvex |
⊢ ◡ ℎ ∈ V |
66 |
62 10
|
coex |
⊢ ( 𝑦 ∘ 𝑔 ) ∈ V |
67 |
65 66
|
coex |
⊢ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ V |
68 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) → ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 ↔ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) |
69 |
67 68
|
elab |
⊢ ( ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ↔ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
70 |
61 64 69
|
3imtr4g |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ) ) |
71 |
47 64
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∧ 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) ↔ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) |
72 |
|
coass |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) |
73 |
|
f1ococnv1 |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐴 ) ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐴 ) ) |
75 |
74
|
coeq2d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) ) |
76 |
39
|
adantrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
77 |
|
f1of |
⊢ ( ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 → ( ℎ ∘ 𝑥 ) : 𝐴 ⟶ 𝐷 ) |
78 |
|
fcoi1 |
⊢ ( ( ℎ ∘ 𝑥 ) : 𝐴 ⟶ 𝐷 → ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) = ( ℎ ∘ 𝑥 ) ) |
79 |
76 77 78
|
3syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) = ( ℎ ∘ 𝑥 ) ) |
80 |
75 79
|
eqtrd |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( ℎ ∘ 𝑥 ) ) |
81 |
72 80
|
eqtr2id |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ 𝑥 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) |
82 |
|
coass |
⊢ ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) |
83 |
|
f1ococnv2 |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ( ℎ ∘ ◡ ℎ ) = ( I ↾ 𝐷 ) ) |
84 |
83
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ ◡ ℎ ) = ( I ↾ 𝐷 ) ) |
85 |
84
|
coeq1d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) ) |
86 |
58
|
adantrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
87 |
|
f1of |
⊢ ( ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 → ( 𝑦 ∘ 𝑔 ) : 𝐴 ⟶ 𝐷 ) |
88 |
|
fcoi2 |
⊢ ( ( 𝑦 ∘ 𝑔 ) : 𝐴 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
89 |
86 87 88
|
3syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
90 |
85 89
|
eqtrd |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
91 |
82 90
|
eqtr3id |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) = ( 𝑦 ∘ 𝑔 ) ) |
92 |
81 91
|
eqeq12d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( 𝑦 ∘ 𝑔 ) ) ) |
93 |
|
eqcom |
⊢ ( ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( 𝑦 ∘ 𝑔 ) ↔ ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) |
94 |
92 93
|
bitrdi |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) ) |
95 |
|
f1of1 |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ℎ : 𝐶 –1-1→ 𝐷 ) |
96 |
95
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ℎ : 𝐶 –1-1→ 𝐷 ) |
97 |
|
f1of |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 → 𝑥 : 𝐴 ⟶ 𝐶 ) |
98 |
97
|
ad2antrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑥 : 𝐴 ⟶ 𝐶 ) |
99 |
60
|
adantrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
100 |
|
f1of |
⊢ ( ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) |
101 |
99 100
|
syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) |
102 |
|
cocan1 |
⊢ ( ( ℎ : 𝐶 –1-1→ 𝐷 ∧ 𝑥 : 𝐴 ⟶ 𝐶 ∧ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) |
103 |
96 98 101 102
|
syl3anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) |
104 |
26
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑔 : 𝐴 –onto→ 𝐵 ) |
105 |
|
f1ofn |
⊢ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 → 𝑦 Fn 𝐵 ) |
106 |
105
|
ad2antll |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑦 Fn 𝐵 ) |
107 |
43
|
adantrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
108 |
|
f1ofn |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) |
109 |
107 108
|
syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) |
110 |
|
cocan2 |
⊢ ( ( 𝑔 : 𝐴 –onto→ 𝐵 ∧ 𝑦 Fn 𝐵 ∧ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
111 |
104 106 109 110
|
syl3anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
112 |
94 103 111
|
3bitr3d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
113 |
112
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
114 |
71 113
|
syl5bi |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∧ 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
115 |
19 37 53 70 114
|
en3d |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
116 |
115
|
exlimivv |
⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
117 |
3 116
|
sylbir |
⊢ ( ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
118 |
1 2 117
|
syl2anb |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |