Metamath Proof Explorer
Description: A finite group has positive integer size. (Contributed by Rohan
Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
hashfingrpnn.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
hashfingrpnn.2 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
hashfingrpnn.3 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
|
Assertion |
hashfingrpnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hashfingrpnn.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
hashfingrpnn.2 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
hashfingrpnn.3 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
4 |
2
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
5 |
1 4 3
|
hashfinmndnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |