| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashfinmndnn.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hashfinmndnn.2 | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 3 |  | hashfinmndnn.3 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 4 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 1 6 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 9 | 8 3 | hashelne0d | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐵 )  =  0 ) | 
						
							| 10 | 9 | neqned | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ≠  0 ) | 
						
							| 11 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐵 )  ≠  0 ) ) | 
						
							| 12 | 5 10 11 | sylanbrc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) |