Step |
Hyp |
Ref |
Expression |
1 |
|
hashfinmndnn.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
hashfinmndnn.2 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
3 |
|
hashfinmndnn.3 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
4 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
1 6
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
9 |
8 3
|
hashelne0d |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐵 ) = 0 ) |
10 |
9
|
neqned |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
11 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ≠ 0 ) ) |
12 |
5 10 11
|
sylanbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |