Metamath Proof Explorer


Theorem hashfinmndnn

Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashfinmndnn.1 𝐵 = ( Base ‘ 𝐺 )
hashfinmndnn.2 ( 𝜑𝐺 ∈ Mnd )
hashfinmndnn.3 ( 𝜑𝐵 ∈ Fin )
Assertion hashfinmndnn ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 hashfinmndnn.1 𝐵 = ( Base ‘ 𝐺 )
2 hashfinmndnn.2 ( 𝜑𝐺 ∈ Mnd )
3 hashfinmndnn.3 ( 𝜑𝐵 ∈ Fin )
4 hashcl ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
5 3 4 syl ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
6 eqid ( 0g𝐺 ) = ( 0g𝐺 )
7 1 6 mndidcl ( 𝐺 ∈ Mnd → ( 0g𝐺 ) ∈ 𝐵 )
8 2 7 syl ( 𝜑 → ( 0g𝐺 ) ∈ 𝐵 )
9 8 3 hashelne0d ( 𝜑 → ¬ ( ♯ ‘ 𝐵 ) = 0 )
10 9 neqned ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 )
11 elnnne0 ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ≠ 0 ) )
12 5 10 11 sylanbrc ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ )