| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 2 |
|
eqid |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) |
| 3 |
1 2
|
hashkf |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 |
| 4 |
|
pnfex |
⊢ +∞ ∈ V |
| 5 |
4
|
fconst |
⊢ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } |
| 6 |
3 5
|
pm3.2i |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 ∧ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } ) |
| 7 |
|
disjdif |
⊢ ( Fin ∩ ( V ∖ Fin ) ) = ∅ |
| 8 |
|
fun |
⊢ ( ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 ∧ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } ) ∧ ( Fin ∩ ( V ∖ Fin ) ) = ∅ ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) |
| 10 |
|
df-hash |
⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 11 |
|
eqid |
⊢ V = V |
| 12 |
|
df-xnn0 |
⊢ ℕ0* = ( ℕ0 ∪ { +∞ } ) |
| 13 |
|
feq123 |
⊢ ( ( ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ∧ V = V ∧ ℕ0* = ( ℕ0 ∪ { +∞ } ) ) → ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) ) |
| 14 |
10 11 12 13
|
mp3an |
⊢ ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 15 |
|
unvdif |
⊢ ( Fin ∪ ( V ∖ Fin ) ) = V |
| 16 |
15
|
feq2i |
⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 17 |
14 16
|
bitr4i |
⊢ ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 18 |
9 17
|
mpbir |
⊢ ♯ : V ⟶ ℕ0* |