Step |
Hyp |
Ref |
Expression |
1 |
|
eluzel2 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) |
2 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
1z |
⊢ 1 ∈ ℤ |
4 |
|
zsubcl |
⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 − 𝐴 ) ∈ ℤ ) |
5 |
3 1 4
|
sylancr |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 1 − 𝐴 ) ∈ ℤ ) |
6 |
|
fzen |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 1 − 𝐴 ) ∈ ℤ ) → ( 𝐴 ... 𝐵 ) ≈ ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) ) |
7 |
1 2 5 6
|
syl3anc |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ... 𝐵 ) ≈ ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) ) |
8 |
1
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
10 |
|
pncan3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + ( 1 − 𝐴 ) ) = 1 ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + ( 1 − 𝐴 ) ) = 1 ) |
12 |
|
1cnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) |
13 |
2
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
14 |
13 8
|
subcld |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
15 |
13 12 8
|
addsub12d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 − 𝐴 ) ) = ( 1 + ( 𝐵 − 𝐴 ) ) ) |
16 |
12 14 15
|
comraddd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 − 𝐴 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
17 |
11 16
|
oveq12d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 + ( 1 − 𝐴 ) ) ... ( 𝐵 + ( 1 − 𝐴 ) ) ) = ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) |
18 |
7 17
|
breqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ... 𝐵 ) ≈ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) |
19 |
|
hasheni |
⊢ ( ( 𝐴 ... 𝐵 ) ≈ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) ) |
21 |
|
uznn0sub |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℕ0 ) |
22 |
|
peano2nn0 |
⊢ ( ( 𝐵 − 𝐴 ) ∈ ℕ0 → ( ( 𝐵 − 𝐴 ) + 1 ) ∈ ℕ0 ) |
23 |
|
hashfz1 |
⊢ ( ( ( 𝐵 − 𝐴 ) + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 1 ... ( ( 𝐵 − 𝐴 ) + 1 ) ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
25 |
20 24
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |