| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzel2 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | eluzelz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 4 |  | zsubcl | ⊢ ( ( 1  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 1  −  𝐴 )  ∈  ℤ ) | 
						
							| 5 | 3 1 4 | sylancr | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 1  −  𝐴 )  ∈  ℤ ) | 
						
							| 6 |  | fzen | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 1  −  𝐴 )  ∈  ℤ )  →  ( 𝐴 ... 𝐵 )  ≈  ( ( 𝐴  +  ( 1  −  𝐴 ) ) ... ( 𝐵  +  ( 1  −  𝐴 ) ) ) ) | 
						
							| 7 | 1 2 5 6 | syl3anc | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ... 𝐵 )  ≈  ( ( 𝐴  +  ( 1  −  𝐴 ) ) ... ( 𝐵  +  ( 1  −  𝐴 ) ) ) ) | 
						
							| 8 | 1 | zcnd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 10 |  | pncan3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  +  ( 1  −  𝐴 ) )  =  1 ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴  +  ( 1  −  𝐴 ) )  =  1 ) | 
						
							| 12 |  | 1cnd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  1  ∈  ℂ ) | 
						
							| 13 | 2 | zcnd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 14 | 13 8 | subcld | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  −  𝐴 )  ∈  ℂ ) | 
						
							| 15 | 13 12 8 | addsub12d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  ( 1  −  𝐴 ) )  =  ( 1  +  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 16 | 12 14 15 | comraddd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  ( 1  −  𝐴 ) )  =  ( ( 𝐵  −  𝐴 )  +  1 ) ) | 
						
							| 17 | 11 16 | oveq12d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐴  +  ( 1  −  𝐴 ) ) ... ( 𝐵  +  ( 1  −  𝐴 ) ) )  =  ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) ) | 
						
							| 18 | 7 17 | breqtrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ... 𝐵 )  ≈  ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) ) | 
						
							| 19 |  | hasheni | ⊢ ( ( 𝐴 ... 𝐵 )  ≈  ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) )  →  ( ♯ ‘ ( 𝐴 ... 𝐵 ) )  =  ( ♯ ‘ ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ... 𝐵 ) )  =  ( ♯ ‘ ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) ) ) | 
						
							| 21 |  | uznn0sub | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  −  𝐴 )  ∈  ℕ0 ) | 
						
							| 22 |  | peano2nn0 | ⊢ ( ( 𝐵  −  𝐴 )  ∈  ℕ0  →  ( ( 𝐵  −  𝐴 )  +  1 )  ∈  ℕ0 ) | 
						
							| 23 |  | hashfz1 | ⊢ ( ( ( 𝐵  −  𝐴 )  +  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) )  =  ( ( 𝐵  −  𝐴 )  +  1 ) ) | 
						
							| 24 | 21 22 23 | 3syl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 1 ... ( ( 𝐵  −  𝐴 )  +  1 ) ) )  =  ( ( 𝐵  −  𝐴 )  +  1 ) ) | 
						
							| 25 | 20 24 | eqtrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ... 𝐵 ) )  =  ( ( 𝐵  −  𝐴 )  +  1 ) ) |