| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzo0 | 
							⊢ ( 𝐴 ..^ 𝐴 )  =  ∅  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2i | 
							⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) )  =  ( ♯ ‘ ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							hash0 | 
							⊢ ( ♯ ‘ ∅ )  =  0  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtri | 
							⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) )  =  0  | 
						
						
							| 5 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ∈  ℤ )  | 
						
						
							| 6 | 
							
								5
							 | 
							zcnd | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 7 | 
							
								6
							 | 
							subidd | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴  −  𝐴 )  =  0 )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqtr4id | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) )  =  ( 𝐴  −  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  𝐴  →  ( 𝐴 ..^ 𝐵 )  =  ( 𝐴 ..^ 𝐴 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( 𝐵  =  𝐴  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐵  =  𝐴  →  ( 𝐵  −  𝐴 )  =  ( 𝐴  −  𝐴 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeq12d | 
							⊢ ( 𝐵  =  𝐴  →  ( ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( 𝐵  −  𝐴 )  ↔  ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) )  =  ( 𝐴  −  𝐴 ) ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							syl5ibrcom | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  =  𝐴  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℤ )  | 
						
						
							| 15 | 
							
								
							 | 
							fzoval | 
							⊢ ( 𝐵  ∈  ℤ  →  ( 𝐴 ..^ 𝐵 )  =  ( 𝐴 ... ( 𝐵  −  1 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ 𝐵 )  =  ( 𝐴 ... ( 𝐵  −  1 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq2d | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴 ... ( 𝐵  −  1 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴 ... ( 𝐵  −  1 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							hashfz | 
							⊢ ( ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ... ( 𝐵  −  1 ) ) )  =  ( ( ( 𝐵  −  1 )  −  𝐴 )  +  1 ) )  | 
						
						
							| 20 | 
							
								14
							 | 
							zcnd | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  1  ∈  ℂ )  | 
						
						
							| 22 | 
							
								20 21 6
							 | 
							sub32d | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐵  −  1 )  −  𝐴 )  =  ( ( 𝐵  −  𝐴 )  −  1 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( ( 𝐵  −  1 )  −  𝐴 )  +  1 )  =  ( ( ( 𝐵  −  𝐴 )  −  1 )  +  1 ) )  | 
						
						
							| 24 | 
							
								20 6
							 | 
							subcld | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 26 | 
							
								
							 | 
							npcan | 
							⊢ ( ( ( 𝐵  −  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝐵  −  𝐴 )  −  1 )  +  1 )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							sylancl | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( ( 𝐵  −  𝐴 )  −  1 )  +  1 )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							eqtrd | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( ( 𝐵  −  1 )  −  𝐴 )  +  1 )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 29 | 
							
								19 28
							 | 
							sylan9eqr | 
							⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ♯ ‘ ( 𝐴 ... ( 𝐵  −  1 ) ) )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 30 | 
							
								18 29
							 | 
							eqtrd | 
							⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							uzm1 | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  =  𝐴  ∨  ( 𝐵  −  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) )  | 
						
						
							| 33 | 
							
								13 31 32
							 | 
							mpjaod | 
							⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) )  =  ( 𝐵  −  𝐴 ) )  |