Metamath Proof Explorer


Theorem hashfzo0

Description: Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion hashfzo0 ( 𝐵 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 hashfzo ( 𝐵 ∈ ( ℤ ‘ 0 ) → ( ♯ ‘ ( 0 ..^ 𝐵 ) ) = ( 𝐵 − 0 ) )
2 nn0uz 0 = ( ℤ ‘ 0 )
3 1 2 eleq2s ( 𝐵 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝐵 ) ) = ( 𝐵 − 0 ) )
4 nn0cn ( 𝐵 ∈ ℕ0𝐵 ∈ ℂ )
5 4 subid1d ( 𝐵 ∈ ℕ0 → ( 𝐵 − 0 ) = 𝐵 )
6 3 5 eqtrd ( 𝐵 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝐵 ) ) = 𝐵 )