Step |
Hyp |
Ref |
Expression |
1 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
2 |
|
eluzelre |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
2
|
ltp1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 < ( 𝐵 + 1 ) ) |
4 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
5 |
|
peano2z |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) ∈ ℤ ) |
6 |
5
|
ancri |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
7 |
|
fzn |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 < ( 𝐵 + 1 ) ↔ ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) ) |
8 |
4 6 7
|
3syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 < ( 𝐵 + 1 ) ↔ ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) ) |
9 |
3 8
|
mpbid |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 + 1 ) ... 𝐵 ) = ∅ ) |
10 |
9
|
fveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( ♯ ‘ ∅ ) ) |
11 |
4
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
12 |
11
|
subidd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐵 ) = 0 ) |
13 |
1 10 12
|
3eqtr4a |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐵 ) ) |
14 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 + 1 ) = ( 𝐵 + 1 ) ) |
15 |
14
|
fvoveq1d |
⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐵 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ↔ ( ♯ ‘ ( ( 𝐵 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐵 ) ) ) |
18 |
13 17
|
syl5ibr |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
19 |
|
uzp1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 ∨ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
20 |
|
pm2.24 |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
21 |
20
|
eqcoms |
⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
22 |
|
ax-1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
23 |
21 22
|
jaoi |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
24 |
19 23
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ¬ 𝐴 = 𝐵 → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) ) |
25 |
24
|
impcom |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) ) |
26 |
|
hashfz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝐴 + 1 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) ) |
27 |
25 26
|
syl |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) ) |
28 |
|
eluzel2 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) |
29 |
28
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
30 |
|
1cnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) |
31 |
11 29 30
|
nppcan2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
32 |
31
|
adantl |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝐵 − ( 𝐴 + 1 ) ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
33 |
27 32
|
eqtrd |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
34 |
33
|
ex |
⊢ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
35 |
18 34
|
pm2.61i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( ( 𝐴 + 1 ) ... 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |