| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashgadd.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 2 |
|
oveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o ∅ ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ∅ ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) |
| 6 |
3 5
|
eqeq12d |
⊢ ( 𝑛 = ∅ → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑛 = ∅ → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o 𝑧 ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 12 |
9 11
|
eqeq12d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑛 = suc 𝑧 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o suc 𝑧 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑛 = suc 𝑧 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑛 = suc 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ suc 𝑧 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 18 |
15 17
|
eqeq12d |
⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑛 = suc 𝑧 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑛 = 𝐵 → ( 𝐴 +o 𝑛 ) = ( 𝐴 +o 𝐵 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) |
| 24 |
21 23
|
eqeq12d |
⊢ ( 𝑛 = 𝐵 → ( ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑛 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑛 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 26 |
1
|
hashgf1o |
⊢ 𝐺 : ω –1-1-onto→ ℕ0 |
| 27 |
|
f1of |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ0 → 𝐺 : ω ⟶ ℕ0 ) |
| 28 |
26 27
|
ax-mp |
⊢ 𝐺 : ω ⟶ ℕ0 |
| 29 |
28
|
ffvelcdmi |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℕ0 ) |
| 30 |
29
|
nn0cnd |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
| 31 |
30
|
addridd |
⊢ ( 𝐴 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + 0 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 32 |
|
0z |
⊢ 0 ∈ ℤ |
| 33 |
32 1
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 0 |
| 34 |
33
|
oveq2i |
⊢ ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + 0 ) |
| 35 |
34
|
a1i |
⊢ ( 𝐴 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + 0 ) ) |
| 36 |
|
nna0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( 𝐺 ‘ 𝐴 ) ) |
| 38 |
31 35 37
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o ∅ ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ ∅ ) ) ) |
| 39 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐴 +o suc 𝑧 ) = suc ( 𝐴 +o 𝑧 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) ) |
| 41 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐴 +o 𝑧 ) ∈ ω ) |
| 42 |
32 1
|
om2uzsuci |
⊢ ( ( 𝐴 +o 𝑧 ) ∈ ω → ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 43 |
41 42
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ suc ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 44 |
40 43
|
eqtrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 45 |
44
|
3adant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) ) |
| 46 |
28
|
ffvelcdmi |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℕ0 ) |
| 47 |
46
|
nn0cnd |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 49 |
|
addass |
⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 50 |
48 49
|
mp3an3 |
⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 51 |
30 47 50
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 52 |
51
|
3adant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 53 |
|
oveq1 |
⊢ ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) ) |
| 54 |
53
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) + 1 ) ) |
| 55 |
32 1
|
om2uzsuci |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 57 |
56
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) ) |
| 58 |
52 54 57
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 59 |
45 58
|
eqtrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) |
| 60 |
59
|
3expia |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) |
| 61 |
60
|
expcom |
⊢ ( 𝑧 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 62 |
61
|
a2d |
⊢ ( 𝑧 ∈ ω → ( ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ suc 𝑧 ) ) ) ) ) |
| 63 |
7 13 19 25 38 62
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 64 |
63
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝐺 ‘ 𝐴 ) + ( 𝐺 ‘ 𝐵 ) ) ) |