Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
3 |
|
hashnncl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
4 |
3
|
biimpar |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
5 |
1 2 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
6 |
5
|
nnge1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ∈ Fin ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
7 |
|
1xr |
⊢ 1 ∈ ℝ* |
8 |
|
pnfge |
⊢ ( 1 ∈ ℝ* → 1 ≤ +∞ ) |
9 |
7 8
|
ax-mp |
⊢ 1 ≤ +∞ |
10 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
12 |
9 11
|
breqtrrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ ¬ 𝐴 ∈ Fin ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
13 |
6 12
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |