| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  𝐴  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  𝐴  ∈  Fin )  →  𝐴  ≠  ∅ ) | 
						
							| 3 |  | hashnncl | ⊢ ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 4 | 3 | biimpar | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 5 | 1 2 4 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 6 | 5 | nnge1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  𝐴  ∈  Fin )  →  1  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 7 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 8 |  | pnfge | ⊢ ( 1  ∈  ℝ*  →  1  ≤  +∞ ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ 1  ≤  +∞ | 
						
							| 10 |  | hashinf | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  =  +∞ ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  =  +∞ ) | 
						
							| 12 | 9 11 | breqtrrid | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  ∧  ¬  𝐴  ∈  Fin )  →  1  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 13 | 6 12 | pm2.61dan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  →  1  ≤  ( ♯ ‘ 𝐴 ) ) |