Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐷 = { 𝑥 } → ( ♯ ‘ 𝐷 ) = ( ♯ ‘ { 𝑥 } ) ) |
2 |
|
hashsng |
⊢ ( 𝑥 ∈ 𝐷 → ( ♯ ‘ { 𝑥 } ) = 1 ) |
3 |
1 2
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐷 = { 𝑥 } ) → ( ♯ ‘ 𝐷 ) = 1 ) |
4 |
3
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
5 6
|
readdcli |
⊢ ( 0 + 1 ) ∈ ℝ |
8 |
7
|
a1i |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 + 1 ) ∈ ℝ ) |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
9
|
a1i |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 2 ∈ ℝ ) |
11 |
|
hashcl |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
12 |
11
|
nn0red |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝐷 ) ∈ ℝ ) |
14 |
8 10 13
|
3jca |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ( 0 + 1 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝐷 ) ∈ ℝ ) ) |
15 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
16 |
|
1lt2 |
⊢ 1 < 2 |
17 |
15 16
|
eqbrtri |
⊢ ( 0 + 1 ) < 2 |
18 |
17
|
jctl |
⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
21 |
|
ltleletr |
⊢ ( ( ( 0 + 1 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝐷 ) ∈ ℝ ) → ( ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
22 |
14 20 21
|
sylc |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) |
23 |
11
|
nn0zd |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℤ ) |
24 |
|
0z |
⊢ 0 ∈ ℤ |
25 |
23 24
|
jctil |
⊢ ( 𝐷 ∈ Fin → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) ) |
27 |
|
zltp1le |
⊢ ( ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 0 < ( ♯ ‘ 𝐷 ) ↔ ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 < ( ♯ ‘ 𝐷 ) ↔ ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
29 |
22 28
|
mpbird |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
30 |
|
0ltpnf |
⊢ 0 < +∞ |
31 |
|
simpl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 𝐷 ∈ 𝑉 ) |
32 |
31
|
anim2i |
⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ¬ 𝐷 ∈ Fin ∧ 𝐷 ∈ 𝑉 ) ) |
33 |
32
|
ancomd |
⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin ) ) |
34 |
|
hashinf |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin ) → ( ♯ ‘ 𝐷 ) = +∞ ) |
35 |
33 34
|
syl |
⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝐷 ) = +∞ ) |
36 |
30 35
|
breqtrrid |
⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
37 |
29 36
|
pm2.61ian |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
38 |
|
hashgt0n0 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 0 < ( ♯ ‘ 𝐷 ) ) → 𝐷 ≠ ∅ ) |
39 |
37 38
|
syldan |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 𝐷 ≠ ∅ ) |
40 |
|
rspn0 |
⊢ ( 𝐷 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ♯ ‘ 𝐷 ) = 1 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ♯ ‘ 𝐷 ) = 1 ) ) |
42 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ 2 ≤ 1 ) ) |
43 |
6 9
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
44 |
|
pm2.21 |
⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
45 |
43 44
|
sylbi |
⊢ ( 1 < 2 → ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
46 |
16 45
|
ax-mp |
⊢ ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) |
47 |
42 46
|
syl6bi |
⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 2 ≤ ( ♯ ‘ 𝐷 ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
48 |
47
|
com12 |
⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) → ( ( ♯ ‘ 𝐷 ) = 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ 𝐷 ) = 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
50 |
41 49
|
syldc |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
51 |
4 50
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
52 |
|
ax-1 |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
53 |
51 52
|
pm2.61i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) |
54 |
|
eqsn |
⊢ ( 𝐷 ≠ ∅ → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ) ) |
55 |
39 54
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ) ) |
56 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
57 |
56
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) ) |
58 |
57
|
ralbidv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ↔ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
59 |
55 58
|
bitrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
60 |
59
|
ralbidv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
61 |
53 60
|
mtbid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
62 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
63 |
62
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐷 ¬ 𝑥 = 𝑦 ) |
64 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
65 |
63 64
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
66 |
65
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ 𝐷 ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
67 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐷 ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
68 |
66 67
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
69 |
61 68
|
sylibr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) |