Description: A set has size at least 2 iff it has at least 2 different elements. (Contributed by AV, 14-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | hashge2el2difb | ⊢ ( 𝐷 ∈ 𝑉 → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge2el2dif | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) | |
2 | hashge2el2difr | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) | |
3 | 1 2 | impbida | ⊢ ( 𝐷 ∈ 𝑉 → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) ) |