Step |
Hyp |
Ref |
Expression |
1 |
|
hashv01gt1 |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 ∨ ( ♯ ‘ 𝐷 ) = 1 ∨ 1 < ( ♯ ‘ 𝐷 ) ) ) |
2 |
|
hasheq0 |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 ↔ 𝐷 = ∅ ) ) |
3 |
|
rexeq |
⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) ) |
4 |
|
rex0 |
⊢ ¬ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 |
5 |
|
pm2.21 |
⊢ ( ¬ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → ( ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
6 |
4 5
|
mp1i |
⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
7 |
3 6
|
sylbid |
⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
8 |
2 7
|
syl6bi |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
9 |
8
|
com12 |
⊢ ( ( ♯ ‘ 𝐷 ) = 0 → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
10 |
|
hash1snb |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 1 ↔ ∃ 𝑧 𝐷 = { 𝑧 } ) ) |
11 |
|
rexeq |
⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ) ) |
12 |
11
|
rexeqbi1dv |
⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ) ) |
13 |
|
vex |
⊢ 𝑧 ∈ V |
14 |
|
neeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑦 ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ) ) |
16 |
13 15
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ) |
17 |
|
neeq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) ) |
18 |
13 17
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) |
19 |
16 18
|
bitri |
⊢ ( ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) |
20 |
12 19
|
bitrdi |
⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) ) |
21 |
|
equid |
⊢ 𝑧 = 𝑧 |
22 |
|
eqneqall |
⊢ ( 𝑧 = 𝑧 → ( 𝑧 ≠ 𝑧 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
23 |
21 22
|
mp1i |
⊢ ( 𝐷 = { 𝑧 } → ( 𝑧 ≠ 𝑧 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
24 |
20 23
|
sylbid |
⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑧 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
26 |
10 25
|
syl6bi |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 1 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
27 |
26
|
com12 |
⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
28 |
|
hashnn0pnf |
⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐷 ) = +∞ ) ) |
29 |
|
1z |
⊢ 1 ∈ ℤ |
30 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( ♯ ‘ 𝐷 ) ∈ ℤ ) |
31 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝐷 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
32 |
31
|
biimpd |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝐷 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
33 |
29 30 32
|
sylancr |
⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐷 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
34 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
35 |
34
|
breq1i |
⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) |
36 |
33 35
|
syl6ibr |
⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
37 |
|
2re |
⊢ 2 ∈ ℝ |
38 |
37
|
rexri |
⊢ 2 ∈ ℝ* |
39 |
|
pnfge |
⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) |
40 |
38 39
|
mp1i |
⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → 2 ≤ +∞ ) |
41 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ 2 ≤ +∞ ) ) |
42 |
40 41
|
mpbird |
⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → 2 ≤ ( ♯ ‘ 𝐷 ) ) |
43 |
42
|
a1d |
⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
44 |
36 43
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐷 ) = +∞ ) → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
45 |
28 44
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
46 |
45
|
impcom |
⊢ ( ( 1 < ( ♯ ‘ 𝐷 ) ∧ 𝐷 ∈ 𝑉 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) |
47 |
46
|
a1d |
⊢ ( ( 1 < ( ♯ ‘ 𝐷 ) ∧ 𝐷 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
48 |
47
|
ex |
⊢ ( 1 < ( ♯ ‘ 𝐷 ) → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
49 |
9 27 48
|
3jaoi |
⊢ ( ( ( ♯ ‘ 𝐷 ) = 0 ∨ ( ♯ ‘ 𝐷 ) = 1 ∨ 1 < ( ♯ ‘ 𝐷 ) ) → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
50 |
1 49
|
mpcom |
⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
51 |
50
|
imp |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) |