| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashge0 | ⊢ ( 𝐴  ∈  𝑉  →  0  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  →  0  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 3 |  | hasheq0 | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ♯ ‘ 𝐴 )  =  0  ↔  𝐴  =  ∅ ) ) | 
						
							| 4 | 3 | necon3bid | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ♯ ‘ 𝐴 )  ≠  0  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 5 | 4 | biimpar | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  →  ( ♯ ‘ 𝐴 )  ≠  0 ) | 
						
							| 6 | 2 5 | jca | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  →  ( 0  ≤  ( ♯ ‘ 𝐴 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 7 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 8 |  | hashxrcl | ⊢ ( 𝐴  ∈  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 9 |  | xrltlen | ⊢ ( ( 0  ∈  ℝ*  ∧  ( ♯ ‘ 𝐴 )  ∈  ℝ* )  →  ( 0  <  ( ♯ ‘ 𝐴 )  ↔  ( 0  ≤  ( ♯ ‘ 𝐴 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 ) ) ) | 
						
							| 10 | 7 8 9 | sylancr | ⊢ ( 𝐴  ∈  𝑉  →  ( 0  <  ( ♯ ‘ 𝐴 )  ↔  ( 0  ≤  ( ♯ ‘ 𝐴 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 ) ) ) | 
						
							| 11 | 10 | biimpar | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 0  ≤  ( ♯ ‘ 𝐴 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 ) )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 12 | 6 11 | syldan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ≠  ∅ )  →  0  <  ( ♯ ‘ 𝐴 ) ) |