| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alnex | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝑉  ↔  ¬  ∃ 𝑥 𝑥  ∈  𝑉 ) | 
						
							| 2 |  | eq0 | ⊢ ( 𝑉  =  ∅  ↔  ∀ 𝑥 ¬  𝑥  ∈  𝑉 ) | 
						
							| 3 | 2 | biimpri | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝑉  →  𝑉  =  ∅ ) | 
						
							| 4 | 3 | a1d | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝑉  →  ( 𝑉  ∈  𝑊  →  𝑉  =  ∅ ) ) | 
						
							| 5 | 1 4 | sylbir | ⊢ ( ¬  ∃ 𝑥 𝑥  ∈  𝑉  →  ( 𝑉  ∈  𝑊  →  𝑉  =  ∅ ) ) | 
						
							| 6 | 5 | impcom | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ¬  ∃ 𝑥 𝑥  ∈  𝑉 )  →  𝑉  =  ∅ ) | 
						
							| 7 |  | hashle00 | ⊢ ( 𝑉  ∈  𝑊  →  ( ( ♯ ‘ 𝑉 )  ≤  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ¬  ∃ 𝑥 𝑥  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑉 )  ≤  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 9 | 6 8 | mpbird | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ¬  ∃ 𝑥 𝑥  ∈  𝑉 )  →  ( ♯ ‘ 𝑉 )  ≤  0 ) | 
						
							| 10 |  | hashxrcl | ⊢ ( 𝑉  ∈  𝑊  →  ( ♯ ‘ 𝑉 )  ∈  ℝ* ) | 
						
							| 11 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 12 |  | xrlenlt | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( ( ♯ ‘ 𝑉 )  ≤  0  ↔  ¬  0  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( 𝑉  ∈  𝑊  →  ( ( ♯ ‘ 𝑉 )  ≤  0  ↔  ¬  0  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 14 | 13 | bicomd | ⊢ ( 𝑉  ∈  𝑊  →  ( ¬  0  <  ( ♯ ‘ 𝑉 )  ↔  ( ♯ ‘ 𝑉 )  ≤  0 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ¬  ∃ 𝑥 𝑥  ∈  𝑉 )  →  ( ¬  0  <  ( ♯ ‘ 𝑉 )  ↔  ( ♯ ‘ 𝑉 )  ≤  0 ) ) | 
						
							| 16 | 9 15 | mpbird | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ¬  ∃ 𝑥 𝑥  ∈  𝑉 )  →  ¬  0  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑉  ∈  𝑊  →  ( ¬  ∃ 𝑥 𝑥  ∈  𝑉  →  ¬  0  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 18 | 17 | con4d | ⊢ ( 𝑉  ∈  𝑊  →  ( 0  <  ( ♯ ‘ 𝑉 )  →  ∃ 𝑥 𝑥  ∈  𝑉 ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝑉  ∈  𝑊  ∧  0  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑥 𝑥  ∈  𝑉 ) |