Step |
Hyp |
Ref |
Expression |
1 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) |
2 |
|
eq0 |
⊢ ( 𝑉 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 ) |
3 |
2
|
biimpri |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 → 𝑉 = ∅ ) |
4 |
3
|
a1d |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑉 → ( 𝑉 ∈ 𝑊 → 𝑉 = ∅ ) ) |
5 |
1 4
|
sylbir |
⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑉 → ( 𝑉 ∈ 𝑊 → 𝑉 = ∅ ) ) |
6 |
5
|
impcom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → 𝑉 = ∅ ) |
7 |
|
hashle00 |
⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) ) |
9 |
6 8
|
mpbird |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≤ 0 ) |
10 |
|
hashxrcl |
⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
11 |
|
0xr |
⊢ 0 ∈ ℝ* |
12 |
|
xrlenlt |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) |
14 |
13
|
bicomd |
⊢ ( 𝑉 ∈ 𝑊 → ( ¬ 0 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≤ 0 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ( ¬ 0 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≤ 0 ) ) |
16 |
9 15
|
mpbird |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ ∃ 𝑥 𝑥 ∈ 𝑉 ) → ¬ 0 < ( ♯ ‘ 𝑉 ) ) |
17 |
16
|
ex |
⊢ ( 𝑉 ∈ 𝑊 → ( ¬ ∃ 𝑥 𝑥 ∈ 𝑉 → ¬ 0 < ( ♯ ‘ 𝑉 ) ) ) |
18 |
17
|
con4d |
⊢ ( 𝑉 ∈ 𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) |