Description: The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | hashgt0elexb | ⊢ ( 𝑉 ∈ 𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) ↔ ∃ 𝑥 𝑥 ∈ 𝑉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashgt0elex | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑥 𝑥 ∈ 𝑉 ) | |
2 | n0 | ⊢ ( 𝑉 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑉 ) | |
3 | hashgt0 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑉 ) ) | |
4 | 2 3 | sylan2br | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ∃ 𝑥 𝑥 ∈ 𝑉 ) → 0 < ( ♯ ‘ 𝑉 ) ) |
5 | 1 4 | impbida | ⊢ ( 𝑉 ∈ 𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) ↔ ∃ 𝑥 𝑥 ∈ 𝑉 ) ) |