Metamath Proof Explorer


Theorem hashgt0elexb

Description: The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018)

Ref Expression
Assertion hashgt0elexb ( 𝑉𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) ↔ ∃ 𝑥 𝑥𝑉 ) )

Proof

Step Hyp Ref Expression
1 hashgt0elex ( ( 𝑉𝑊 ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑥 𝑥𝑉 )
2 n0 ( 𝑉 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑉 )
3 hashgt0 ( ( 𝑉𝑊𝑉 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑉 ) )
4 2 3 sylan2br ( ( 𝑉𝑊 ∧ ∃ 𝑥 𝑥𝑉 ) → 0 < ( ♯ ‘ 𝑉 ) )
5 1 4 impbida ( 𝑉𝑊 → ( 0 < ( ♯ ‘ 𝑉 ) ↔ ∃ 𝑥 𝑥𝑉 ) )