Description: If the size of a set is greater than 0, the set is not empty. (Contributed by AV, 5-Aug-2018) (Proof shortened by AV, 18-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | hashgt0n0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 𝐴 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashneq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≠ ∅ ) ) | |
2 | 1 | biimpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 𝐴 ≠ ∅ ) |