Step |
Hyp |
Ref |
Expression |
1 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
2 |
|
fveq2 |
⊢ ( ∅ = 𝑉 → ( ♯ ‘ ∅ ) = ( ♯ ‘ 𝑉 ) ) |
3 |
1 2
|
eqtr3id |
⊢ ( ∅ = 𝑉 → 0 = ( ♯ ‘ 𝑉 ) ) |
4 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) ↔ 1 < 0 ) ) |
5 |
4
|
biimpd |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
6 |
5
|
eqcoms |
⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
7 |
|
0le1 |
⊢ 0 ≤ 1 |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
8 9
|
lenlti |
⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
11 |
|
pm2.21 |
⊢ ( ¬ 1 < 0 → ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
12 |
10 11
|
sylbi |
⊢ ( 0 ≤ 1 → ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
13 |
7 12
|
ax-mp |
⊢ ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |
14 |
6 13
|
syl6com |
⊢ ( 1 < ( ♯ ‘ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
16 |
15
|
com12 |
⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
17 |
3 16
|
syl |
⊢ ( ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
18 |
|
df-ne |
⊢ ( ∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉 ) |
19 |
|
necom |
⊢ ( ∅ ≠ 𝑉 ↔ 𝑉 ≠ ∅ ) |
20 |
18 19
|
bitr3i |
⊢ ( ¬ ∅ = 𝑉 ↔ 𝑉 ≠ ∅ ) |
21 |
|
ralnex |
⊢ ( ∀ 𝑎 ∈ 𝑉 ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |
22 |
|
ralnex |
⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |
23 |
|
nne |
⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏 ) |
24 |
|
equcom |
⊢ ( 𝑎 = 𝑏 ↔ 𝑏 = 𝑎 ) |
25 |
23 24
|
bitri |
⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑏 = 𝑎 ) |
26 |
25
|
ralbii |
⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
27 |
22 26
|
bitr3i |
⊢ ( ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
28 |
27
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝑉 ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
29 |
21 28
|
bitr3i |
⊢ ( ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
30 |
|
eqsn |
⊢ ( 𝑉 ≠ ∅ → ( 𝑉 = { 𝑎 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( 𝑉 = { 𝑎 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) ) |
32 |
31
|
bicomd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ 𝑉 = { 𝑎 } ) ) |
33 |
32
|
ralbidv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } ) ) |
34 |
|
fveq2 |
⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑎 } ) ) |
35 |
|
hashsnle1 |
⊢ ( ♯ ‘ { 𝑎 } ) ≤ 1 |
36 |
34 35
|
eqbrtrdi |
⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) |
37 |
36
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑉 ) → ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
38 |
37
|
reximdva0 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑉 ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
39 |
|
r19.36v |
⊢ ( ∃ 𝑎 ∈ 𝑉 ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) → ( ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
41 |
33 40
|
sylbid |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
42 |
|
hashxrcl |
⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
43 |
42
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
44 |
|
1xr |
⊢ 1 ∈ ℝ* |
45 |
|
xrlenlt |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
46 |
43 44 45
|
sylancl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
47 |
41 46
|
sylibd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
48 |
29 47
|
syl5bi |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
49 |
48
|
con4d |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
50 |
49
|
impancom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 𝑉 ≠ ∅ → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
51 |
50
|
com12 |
⊢ ( 𝑉 ≠ ∅ → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
52 |
20 51
|
sylbi |
⊢ ( ¬ ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
53 |
17 52
|
pm2.61i |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |