Step |
Hyp |
Ref |
Expression |
1 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
2 |
|
fveq2 |
⊢ ( ∅ = 𝑉 → ( ♯ ‘ ∅ ) = ( ♯ ‘ 𝑉 ) ) |
3 |
1 2
|
eqtr3id |
⊢ ( ∅ = 𝑉 → 0 = ( ♯ ‘ 𝑉 ) ) |
4 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) ↔ 1 < 0 ) ) |
5 |
4
|
biimpd |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
6 |
5
|
eqcoms |
⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
7 |
|
0le1 |
⊢ 0 ≤ 1 |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
8 9
|
lenlti |
⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
11 |
|
pm2.21 |
⊢ ( ¬ 1 < 0 → ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
12 |
10 11
|
sylbi |
⊢ ( 0 ≤ 1 → ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
13 |
7 12
|
ax-mp |
⊢ ( 1 < 0 → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |
14 |
6 13
|
syl6com |
⊢ ( 1 < ( ♯ ‘ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
16 |
3 15
|
syl5com |
⊢ ( ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
17 |
|
df-ne |
⊢ ( ∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉 ) |
18 |
|
necom |
⊢ ( ∅ ≠ 𝑉 ↔ 𝑉 ≠ ∅ ) |
19 |
17 18
|
bitr3i |
⊢ ( ¬ ∅ = 𝑉 ↔ 𝑉 ≠ ∅ ) |
20 |
|
ralnex |
⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝐴 ≠ 𝑏 ↔ ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |
21 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝑏 ↔ 𝐴 = 𝑏 ) |
22 |
|
eqcom |
⊢ ( 𝐴 = 𝑏 ↔ 𝑏 = 𝐴 ) |
23 |
21 22
|
bitri |
⊢ ( ¬ 𝐴 ≠ 𝑏 ↔ 𝑏 = 𝐴 ) |
24 |
23
|
ralbii |
⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝐴 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) |
25 |
20 24
|
bitr3i |
⊢ ( ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) |
26 |
|
eqsn |
⊢ ( 𝑉 ≠ ∅ → ( 𝑉 = { 𝐴 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ) ) |
27 |
26
|
bicomd |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 ↔ 𝑉 = { 𝐴 } ) ) |
30 |
|
hashsnle1 |
⊢ ( ♯ ‘ { 𝐴 } ) ≤ 1 |
31 |
|
fveq2 |
⊢ ( 𝑉 = { 𝐴 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝐴 } ) ) |
32 |
31
|
breq1d |
⊢ ( 𝑉 = { 𝐴 } → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) ) |
33 |
32
|
adantl |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑉 = { 𝐴 } ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ( ♯ ‘ { 𝐴 } ) ≤ 1 ) ) |
34 |
30 33
|
mpbiri |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑉 = { 𝐴 } ) → ( ♯ ‘ 𝑉 ) ≤ 1 ) |
35 |
34
|
ex |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑉 = { 𝐴 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
36 |
29 35
|
sylbid |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
37 |
|
hashxrcl |
⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
38 |
37
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
40 |
|
1xr |
⊢ 1 ∈ ℝ* |
41 |
|
xrlenlt |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
42 |
39 40 41
|
sylancl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
43 |
36 42
|
sylibd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝐴 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
44 |
25 43
|
syl5bi |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
45 |
44
|
con4d |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) ∧ 𝐴 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
46 |
45
|
exp31 |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑉 ≠ ∅ → ( 𝐴 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) ) ) |
47 |
46
|
com24 |
⊢ ( 𝑉 ∈ 𝑊 → ( 1 < ( ♯ ‘ 𝑉 ) → ( 𝐴 ∈ 𝑉 → ( 𝑉 ≠ ∅ → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) ) ) |
48 |
47
|
3imp |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑉 ≠ ∅ → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
49 |
48
|
com12 |
⊢ ( 𝑉 ≠ ∅ → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
50 |
19 49
|
sylbi |
⊢ ( ¬ ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) ) |
51 |
16 50
|
pm2.61i |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 𝐴 ≠ 𝑏 ) |